跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/21 20:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏士強
研究生(外文):Shih-Chiang Wei
論文名稱:有機薄膜電晶體之研究
論文名稱(外文):Researches on Pentacene-Based Thin-Film Transisters
指導教授:李柏璁李柏璁引用關係
指導教授(外文):Po-Tsung Lee
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:42
中文關鍵詞:有機薄膜電晶體五環素自我致熱效應接面電阻表面處理
外文關鍵詞:OTFTspentaceneself-heating effectcontact resistancesurface treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:2
在此論文中,我們首先針對不同厚度的五環素(pentacene)做材料方面的分析,以原子力顯微鏡(AFM)探究表面的輪廓,以及X射線繞射(XRD)量測,來分析材料品質,並且與製作成元件的電特性相比較。在此製程當中,五環素厚度為1000Å時,可以得到最佳的特性。在變更量測溫度方面,我們發現隨著溫度升高,電流增加,載子的遷移率(mobility)也隨之上升,然而到了臨界的溫度之後,汲極(drain)電流在飽和區的時候會有降低的現象發生,我們將此現象歸因於自我致熱(self-heating)現象所致。這也是由於溫度升高,晶格之間擾動造成的散射效應所導致。在不同溫度的量測之間,我們亦萃取了活化能(activation energy)並找出其和閘極偏壓之間的關係,同時和常見的邊界位障降低的模型(grain boundary barrier lowering model)做比較。
在有機薄膜電晶體當中,接面電阻的效應是格外嚴重的。我們利用電流和電壓以及通道長度L之間的相關性,來萃取出和通道長度L不相關的接面電阻部份,並且也找出接面電阻和閘極偏壓之相關性。除此之外,不同溫度量測得到的接面電阻可以釐清在溫度改變時,特性變化產生的原因。
在提升有機薄膜電晶體特性的方法之中,表面處理是一種相當有效且直接的方式。在本實驗中,我們利用HMDS(Hexamethyldisilazane) 來做為表面處理的材料,實驗結果也可驗證表面處理對於元件的特性是有助益的。
In this thesis, we first discuss the material characteristics of the pentacene-based OTFTs with different pentacene film thicknesses. The grain size and film quality can be analyzed by AFM and XRD measurements, respectively. The performances are the best for the 1000Å-thick device.
By changing the measurement temperatures, we find the drain current and mobility get larger as the temperature increases. After the critical temperature, the lattice vibration is more severe and the drain current decreases in the saturation region due to scattering which is the so-called self-heating effect. We also extract the activation energy from the measurements of different temperatures and find its gate voltage dependence, which corresponds to the generally-used grain boundary barrier lowering model.
The effect of contact resistance is especially serious in OTFTs. We extract the contact resistance by using the relationship between the drain current and drain voltage and channel length L. The dependence of the gate bias on the contact resistance is also investigated.
Among the methods for improving the characteristics of the OTFTs, surface treatment is an effective one. We use HMDS (Hexamethyldisilazane) for surface treatment and the performances of devices after surface treatment are much improved.
Chinese Abstract I
English Abstract III
Contents V
Table Captions VII
Figure Captions VIII
Acknowledgements IX

Chapter 1. Introduction 1
1.1 Background and development of OTFTs 1
1.2 Motivation 4
1.3 Organization of this thesis 6

Chapter 2. Properties of Organic Thin Film Transistors 7
2.1 Characteristics of the organic materials 7
2.1.1 Polymers 8
2.1.2 Small molecules 8
2.2 Operation of OTFTs 9
2.3 Transportation mechanisms 11
2.3.1 Band-like transport 11
2.3.2 Hopping 12
2.4 Parameters extraction 13
2.4.1 Mobility 13
2.4.2 Threshold voltage 13
2.4.3 On/Off current ratio 14

Chapter 3. Device Structure and Experiments Results 15
3.1 Devices structure 15
3.1.1 Devices from ERSO 15
3.1.2 Devices from NCTU 16
3.2 Different pentacene film thicknesses 18
3.2.1 AFM images 18
3.2.2 XRD 19
3.2.3 Electrical characteristics 20
3.3 Different measurement temperatures 24
3.4 Contact resistance 32
3.5 Surface treatment 34

Chapter 4. Conclusions 38

References 40
[1] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. Heeger, “Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x”, J. Chem. Soc. Chem. Commun, Vol. 00, pp. 578, (1977)
[2] A. Tsumura, K. Koezuka, and T. Ando, “Macromolecular electronic devices: Field-effect transistor with a polythiophene thin film”, Appl. Phys. Lett. Vol.49, pp. 1210, (1986)
[3] F. Ebisawa, T. Kurosawa, S. Nara, “Electrical properties of Polycaetylene/polysiloxane interface”, J. Appl. Phys, Vol. 54, pp. 3255-3259, (1983)
[4] R. Smith, D. Allee, C. Moyer, and D, Loy, “Flexible Transistor Arrays”, SID 21, 18, (2005)
[5] C. D. Dimitrakopoulos, D. J. Mascaro, “Organic thin-film transistors: a review of recent advances”, IBM J. Res. Dev 45, 11-27, (2001)
[6] C. Reese, M. Roberts, Mang-mang Ling, and Z. Bao, “Organic thin film transistors”, Materialstoday, Vol. 7, pp. 20-27, (2004)
[7] S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, and T. N. Jackson, “Temperature-independent transport in high-mobility pentacene transistors”, Appl. Phys. Lett., Vol. 72, pp.1854 (1998)
[8] C. Goldmann, S. Haas, C. Krellner, K. P. Pernstich, D. J. Gundlach, and B. Batlogg. “Hole mobility in organic single crystals measured by a "flip-crystal" field-effect technique”, J. Appl. Phys., Vol. 96, pp. 2080 (2004)
[9] Ruiz. R, Choudhary. D, Nickel. B, Toccoli. T, Chang. K-C, Mayer. A. C, Clancy, Blakely. J. M, Headrick. R. L, Iannotta. S, and Malliaras. G. G, “Pentacene Thin Film Growth”, Chem. Mater, Vol 16, pp 4497, (2004)
[10] H. Klauk, M. Halik, U. Zschieschamg, G. Schmid, W. Radlik. “Polymer gate dielectric pentacene TFT and circuits on flexible substrates”, Technical Digest of IEDM, 557, (2002)
[11] T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones. “High performance of organic thin film transistors, in Organic and Polymeric Materilas and Devices”, edited by P. W. M. Blom, N. C. Greenham, D. D. Dimitrakopoulos, and C. D. Frisbie. (Mater. Res. Soc. Symp. Proc. 771, Warrendale, PA, 2003), P. 169
[12] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw. “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers”, Nature, Vol 401, pp 685-688 (1999)
[13] G. M. Wang, J. Swensen, D. Moses, and A. J. Heeger, “Increased mobility from regioregular poly (3-hexylthiophene) field-effect transistors”, J. Appl. Phys, Vol 93, pp 6137, (2003)
[14] L. Sebastian, G. Weiser, and H. Bassler, “Charge transfer transitions in solid tetracene and pentacene studied by electroabsorption”, Chemical Physics, Vol 61, pp 125-135, (1981)
[15] E. A. Silinsh, and V.Capek, “Organic Molecular Crystals: Their Electronic States “, New York, (1980)
[16] T. Torsi, “Novel applications of organic based thin film transistors”, Solid-State Elecronics, Vol 45, pp 1479-1485, (2001)
[17] G. Horowitz, R. Hajlaoui, P. Delannoy, “Temperature dependence of the field-effect mobility of sexithiophene. Determination of the trap density”, J-Phys III France 5:355-371, (1995)
[18] W. E. Spear and P. G. Le Comber, J. Non-Cryst. Solids 8-10, 727 (1972)
[19] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callefari, J. M. Shaw, “Low-voltage organic transistors on plastic comprising high-dielectric-constant gate insulator”, Science, Vol 283, pp 822-824, (1999)
[20] C. D. Dimitrackopoulos, J. Kymissis, S. Purushothaman, D. A. Neumayer, P. R. Duncombe, R. B. Laibowitz, “Low-voltage, high-mobility pentacene transistors with solution-processed high-dielectric constant insulators’, Adv. Mater, Vol 11: 1372-1375, (1999)
[21] I. Muzicante, E. A. Silinsh. “Investigation of local trapping states in organic molecular crystals by method of thermally modulated space-charge limited current. Acta.Phys Pol A (Poland) 88:389-399, (1995)
[22] N. Karl, “Getting beyond impurity-limited transport in organic photoconductors. In K. Sumino, ed, “Defect Control in Semiconductors. Vol. II. Amsterdam : North Holland, pp 1725-1746, (1999)
[23] G. Horowitz, M. E. Hajlaoui, “Mobility in polycrystalline oligothiophene field-effect transistors dependent on grain size’, Adv. Mater, Vol 12, pp 1046-1050, (2000)
[24] G. Horowitz, M. E. Hajlaoui, R. Hajlaoui, “Temperature and gate voltage dependence of hol mobility in polycrystalline oligothiophene thin-film transistors”, J. Appl. Phys, Vol 87, pp 4456-4463, (2000)
[25] E. A. Silinsh, A. Klimkans, S. Larsson, and V. Capek, “Molecular polaron states in polyacene crystals. Formation and transfer processes”, Chem. Phys, Vol 198, pp 311, (1995)
[26] M. D. J. M. Vissenberg, M. Matters, “Theory of the field-effect mobility in amorphous organic transistors”, Phys. Rev. B, Vol 57, pp 12964, (1998)
[27] M. Halik, H. Klauk, U. Zscieschang, G. Shmid, C. Dehm, M. Schutz, S. Maisch, F. Effecberger, M. Brunnbauer, and F. Stellacci, “Low-voltage organic transistors with an amorphous molecular gate dielectric”,Nature, Vol 43, pp 963-966, (2005)
[28] Jiyoul Lee, J. H. Kim, and Seongil Im, “Effects of substrate temperature on the device properties of pentacene-based thin film transistors using Al[sub 2]O[sub 3 + x] gate dielectric”, J. Appl. Phys, Vol 95, pp 3733 (2004)
[29] I. Yagi, K. Tsukagoshi, nad Y. Aoyagi, “Growth control of pentacene films on SiO2/Si substrates towards formation of flat conduction layers”, Thin Solid Films, Vol 467, pp 168, (2004)
[30] J. A. Nichols, D. J. Gundlach, and T. N. Jackson, “Potential imaging of pentacene organic thin-film transistors”, Appl. Phys. Lett, Vol 83, pp 2366, (2003)
[31] Puntambekar, K. P. ; Pesavento, P. V. ; Frisbie, C. D, “Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy”, Appl. Phys. Lett, Vol 83,pp 5539, (2003)
[32] Jiyoul Lee, J. H. Kim, Seongil Im, and Duk-Young Jung, “Threshold voltage change due to organic-inorganic interface in pentacene thin-film transistors”, J. Appl. Phys, Vol 96, pp 2301, (2004)
[33] D. Knipp, R. A. Street, A. Völkel, and J. Ho, “Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport”, J. Appl. Phys, Vol 93, pp 347, (2003)
[34] Ling. Wang, T. A. Fjeldly, B. Iniguez, H. C. Slade, and M. Shur, “Self-heating and kink effects in a-Si thin-film transistors”, IEEE Electron Device Lett, Vol 47, pp 387, (2000)
[35] P. Stallinga, H. L. Gomes, F. Biscarini, M. Murgia, and D. M. de Leeuw, “Electronic transport in field-effect transistors of sexithiophene”, J. Appl. Phys, Vol 96, pp 5277, (2004)
[36] T. Minari, T. Nemoto, and S. Isoda, “Fabrication and characterization of single-grain organic field-effect transistor of pentacene”, J. Appl. Phys, Vol 96, pp 769, (2004)
[37] H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, T. N. Jackson, “Contract resistance in organic thin film transistors”, Solid States Electronics, Vol 47, pp 297, (2003)
[38] N. Yoneya, M. Noda, N. Hirai, K. Nomoto, M. Wada, and J. Kasahara, “Reduction of contact resistance in pentacene thin-film transistors by direct carrier injection into a-few-molecular-layer channel”, Appl. Phys. Lett, Vol 85, pp 4663, (2004)
[39] I. Yagi, K. Tsukagoshi, Y. Aoyagi, “Modification of the electric conduction at the pentacene/SiO2 interface by surface termination of SiO2“, Appl. Phys. Lett, Vol 86, pp 103502, (2004)
[40] Y. Suzue, T. Manaka, and M. Iwamoto, “Current-Voltage Characteristics of Pentacene Films: Effects of UV/Ozone Treatment on Au Electrodes”, J. J. Appl. Phys, Vol 44, pp 561, (2005)
[41] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, and G. Schitter, “Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator”, J. Appl. Phys, Vol 96, pp 6431, (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top