跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 11:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉柏均
研究生(外文):Po-Chun Liu
論文名稱:三五族化合物半導體晶圓接合之基本研究及應用
論文名稱(外文):Fundamental Studies and Applications of III-V Compound Semiconductor Wafer Bonding
指導教授:吳耀銓
指導教授(外文):Yewchung Sermon Wu
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:169
中文關鍵詞:晶圓接合砷化鎵磷化鋁銦鎵磷化鎵三五族化合物半導體發光二極體氧化銦錫
外文關鍵詞:Wafer bondingGaAsAlGaInPGaPIII-V compound semiconductorLight emitting diodesIndium Tin Oxide
相關次數:
  • 被引用被引用:19
  • 點閱點閱:807
  • 評分評分:
  • 下載下載:178
  • 收藏至我的研究室書目清單書目收藏:0
本論文可被區分為兩個主要的部分:一為三五族化合物半導體的接合介面之研究,另一個是化合物半導體晶圓接合在光電元件上的應用。在第一部份探討晶圓接合退火溫度對於砷化鎵接合介面的影響,接著討論接合介面變化與電性的關係。另外,也研究晶圓接合的旋轉角度差異和兩晶片表面角度的差異和電性變化的關係。第二部份是利用晶圓接合的方式轉移異質磊晶種子層成功的執行大晶格不匹配的異質磊晶成長。另一方面,媒介層亦被利用來降低晶圓接合製程溫度,最佳化晶圓接合製程於高亮度發光二極體上的應用。

矽摻雜n-型(100)並留有原生氧化層的單砷化鎵試片和雙片砷化鎵接合試片在相同的溫度下進行退火(400-850℃),有系統的觀察接合介面的原生氧化層與電性隨著溫度改變情形。實驗結果指出當晶圓接合溫度為400℃時,砷化鎵晶片是靠著連續非晶質氧化層接合,將接合溫度升高超過400℃以上,接合介面的氧化層分佈漸漸變為局部分佈最後消失,接合介面電阻隨溫度升高漸漸的降低,然而,若將溫度繼續升高到850℃以上,介面氧化層會擴散到n-型砷化鎵半導體中並發生了反轉效應(n型轉為半絕緣),使得其介面電阻急遽升高。在p-型砷化鎵半導體在相同的溫度下進行接合,但是介面電阻隨著接合溫度升高而降低,結果證明了n-型砷化鎵受高溫影響產生反轉效應。除此之外,接合角度差異與介面電阻也被研究,執行順相與返相(Anti- and In-phase)兩類的晶圓接合(700℃ 1小時),發現反相接合的介面非晶質區存在一薄薄(5nm以下)的非晶質區,這造成順相接合的介面電阻確實比反相接合低。

磊晶層轉移是晶圓接合技術在光電元件應用上重要的一項,具有直線通道圖形的50nm磷化銦鎵磊晶層轉移到磷化鎵基板上當作磷化鋁銦鎵異質磊晶的種子層,磷化銦鎵磊晶轉移層轉移後幾乎沒有缺陷在轉移層中被觀察到,並且,光電性質無太劇烈改變,此外,發現n-型磷化銦鎵/n-型磷化鎵異質晶圓接合的表面角度差異越大介面電阻就越大的現象,藉由種子層將上述的四元合金成長在這具有線圖形的基板上,得到了低缺陷密度以及良好光電特性的異質磊晶結構。

晶圓直接接合技術常被用來製作高亮度發光二極體,晶圓接合常需要在高溫下執行,可能會造成發光二極體元件結構的衰退,除此之外,晶圓接合時常會兩晶片之間存在一些不可避免的相對旋轉角,在這實驗,這兩種問題將利用多晶的氧化銦錫薄膜做為媒介層於650℃以下接合磷化銦鎵/砷化鎵和砷化鎵晶片來解決,可發現接合的機制是由於磷化銦鎵上的銦流動到氧化銦錫薄膜上來發生,介面電阻也比起直接接合磷化銦鎵/砷化鎵和砷化鎵晶片來的低,並且隨溫度增加電阻會減少。這媒介層應用在晶圓接合的發光二極體中亦發現,這媒介層存在確實會降低直接晶圓接合元件中的起使電壓並增加操作電流。
The main topics of this thesis can be divided into two categories: (1) The investigation of boned interfaces of III-V compound semiconductors; (2) Applications of III-V compound semiconductors wafer bonding to optoelectronic devices. In the first category, the effects of annealing temperature on the morphology and the change of electrical property of bonded interfaces were discussed. In addition, the effects of the rotational misalignments and relative surface misorientations between two wafers on electrical resistance of bonded wafers were also studied. In the second category, a seed layer was bonded and transferred to a large lattice mismatched substrate first. Then, the heteroepitaxy layer was grown on the large lattice mismatched substrate successfully by means of the seed layer. Furthermore, to optimum the wafer bonding process of high brightness LEDs (Light emitting diodes), an intermediate layer was used to decrease wafer bonding temperature.

Si doped n-type (100) GaAs wafers which have native oxide were used for systematically investigation of the bonded interface and the electrical characteristics. For estimating the electrical characteristics of bonded wafer, single GaAs wafers and two-layer bonded stacks were annealed at the same temperature (400-850℃). Experimental results indicated that GaAs bond via an amorphous oxide layer at 400 °C. When temperatures increased above 400 °C, the oxide bonded area declined and finally disappeared. The electrical resistance of bonded interface decreased with the increase of bonded temperature. However, the resistance increased with temperatures exceeding 850 °C. This result caused by the oxygen in-diffusion into n-GaAs and the effect of inversion. P-type GaAs samples were also pressed against each other and annealed under identical thermal conditions. The electrical resistance of bonded interface decreased with the increase of bonded temperature, even the temperatures exceeds 850 °C. Results evidence that the event of inversion of n-GaAs wafers were occurred. Besides, the relationship between various bonding angle and the change of electrical resistance was also studied. Both anti-phase and in-phase structures were bonded at 700 ℃ for 1 hr. It was observed that a thin amorphous layer (about 5 nm) existed at the anti-phase bonded interface. The amorphous layer in the anti-phase bonding structure caused the higher electrical resistance than that was in-phase bonding structure.

Layer transfer technique is one of important applications of wafer bonding to optoelectronic devices. A 50 nm n-In0.5Ga0.5P layer with line patterns was transferred to the n-GaP substrate. This line patterned layer acted as a seed layer for quaternary alloy (AlxGa1-x)0.5In0.5P heteroepitaxy. Almost no defects were observed in the transferred layer and only few changes in the optical property. Moreover, it was discovered that the interface electrical resistance rose while surface misorientations were added. The quaternary alloy which had low defect density and fine optoelectronic property was grown on the line patterned substrate successfully.

Wafer-direct-bonding technique is usually used to the fabrication of high brightness LEDs. However, bonding processes were usually performed at elevated temperatures, possibly causing degradation in the quality of the LED structure. In addition to this, misorientation between the two bonded wafers may have caused defects between the wafers. In this study, these two problems were solved by bonding the InGaP/GaAs and GaAs wafers with an indium tin oxide (ITO) polycrystalline film at temperatures below 650 ℃. It was found that the bonding occurred mainly through the In transport from the InGaP to ITO, and that the electrical resistance decreased with the bonding temperature. Then, the intermediate layer was used to fabricate high brightness LEDs. Compared with wafer direct bonding technique, the lower threshold voltage and the higher operating current can be gained by using the ITO intermediate layer.
第一章
〔1〕J. Haisma, G. A. C. M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of material acience and technology, physics and chenistry Historical review in a broader scope and cmparative outlook” , Materials science and engineering, R 37, pp.1-60, April 2002 .
〔2〕J. T. Desaguliers, Philos. Trans. R. Soc. Lond. 33, pp. 345, 1725.
〔3〕Q.-Y. Tong, and U. Gösese, Semiconductor wafer bonding: science and technology, Chap. 2, John Wiley & Sons, Inc., 1998.
〔4〕L. Rayleight, “A study of glass surfaces in optical contact”, Proc. Phys. Soc., A156, pp.326, 1936.
〔5〕T. A. Michalske and E. R. Fuller,“ Closure and repropagation of healed cracks in silicate glass”, J. Am. Ceram. Soc., 68, pp. 586-590, November 1985.
〔6〕L. R. Fisher and J. N. Israelachvili, “ Direct measurement of effect of meniscus forces on adhesion: A study of the applicability of macroscopic thermodynamics to microscopic liquid interface”, Colloids Surf., 3, pp. 303-319, December 1981.
〔7〕J.N. Israelachvili, P. McGuiggan, and R. Horn, “Basic physics of interactions between surfaces in dry, humid and aqueous environments”, Proceedings of 1st International Symposium on Semiconductor Wafer bonding: Science, Technology and Applications, 92-7, The electrochemical society, Pennington, NJ, pp. 33-47, 1992.
〔8〕K.-T. Wan, D, T. Amith, and B. R. Lawn, “Fracture and contact adhesion energies of mica-mica, and silica-silica, and mica-silica interface in dry and moist atmospheres”, J. Am. Cream. Soc., 75, pp. 667-76, March1992.
〔9〕W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to ceramics, John Weily & Sons. Inc., 1976.
〔10〕Q. Y. Tong, E. Schmidt, and U. Gösele, “Hydrophobic silicon wafer bonding”, Appl. Phys. Lett., 64, pp. 625-627, January 1994.
〔11〕李天錫,林澤勝,彭成鑑,呂冠良,潘信宏,「晶圓鍵合技術及其應用」,工業材料雜誌,170期,146-157頁,民國90年2月。
〔12〕T. Suni, K. Henttinen, I. Suni, and J. Mäkinen, “Effects of Plasma Activation on Hydrophilic Bonding of Si and SiO2”, J. Electrochem. Soc., 149 , pp. G348-G351, June 2002.
〔13〕M. M. R. Howlader, T. Watanabe, and T. Suga, “Investigation of the bonding strength and interface current of p-Si/n-GaAs wafers bonded by surface activated bonding at room temperature”, J.Vac.Sci. Technol. B, 19, pp. 2114-2118, November 2001.
〔14〕Frank Shi, Hao Chen, and Scott MacLaren, “Wafer-bonded semiconductors using In/Sn and Cu/Ti metallic interlayers”, Appl. Phys. Lett., 84, pp. 3504-3506, May 2004.
〔15〕R. H. Horng, C. E. Lee, S. C. Hsu, S. H. Huang, C. C. Wu, C. Y. Kung, and D. S. Wuu , “Vertical-conducting p-side-up GaN/mirror/Si light-emitting diodes by laser lift-off and wafer-transfer techniques”, Phys. stat. sol. (a), 201, pp.2699-2703, September 2004.
〔16〕H. C. Lin, K. L. Chang, G. W. Pickrell, K. C. Hsieh, and K. Y. Cheng, “Low temperature wafer bonding by spin on glass”, J. Vac. Sci. Technol. B, 20, pp. 752-754, March 2002.
〔17〕D. Cengher, Z. Hatzopoulos, S. Gallis, G. Deligeorgis, E. Aperathitis, M. Androulidaki, M. Alexe, V. Dragoi, E. D. Kyriakis-Bitzaros, G. Halkias, A. Georgakilas, “Fabrication of GaAs laser diodes on Si using low-temperature bonding of MBE-grown GaAs wafers with Si wafers”, Journal of Crystal Growth, 251, pp. 754-759, April 2003.
〔18〕K. Hjort, “Transfer of InP epilayers by wafer bonding”, Journal of Crystal Growth, 268 pp. 346-358, August 2004.
〔19〕Niklaus F. Andersson H. Enoksson P. Stemme G., “Low temperature full wafer adhesive bonding of structured wafers”, Sensors & Actuators A-Physical, A92, pp. 235-241, August 2001.
〔20〕P. Y. Chevalier, Thermochimica Acta, 130, pp. 1-13, 1988.
〔21〕K.T. Wan, R. G. Horn, S. Courmont, and B. R. Lawn, “Pressurized internal lenticular cracks at healed mica interface,” J. Mater. Res., 8, pp. 1128-1136, May 1993.
〔22〕Q. T. Tong and U. Gösele, “Semiconductor wafer bonding: recent developments”, Mater. Chem. and phys., 37, pp. 101-127, March 1994.
〔23〕J. W. Whalen, “Nonlinear resonance and stochasticity in intramolecular energy exchange”, J. Phys. Chem., 65, pp.1676 -1683, September 1961.
〔24〕T. A. Michalske, and B. C. Bunker, “Slow fracture model based on strained silicate structures”, J. Appl. Phys., 56, pp. 2686-2693, November1984.
〔25〕 M. K. Weldon, V. E. Marsico, Y. J. Chabal, A. Agarwal, D. J. Eaglesham, J. Sapjeta, W. L. Brown, D. C. Jacobson, Y. Caudano, S. B. Christman, and E. E. Chaban, “Mechanistic studies of silicon wafer bonding and layer exfoliation”, Proceedings of 4th International Symposium on Semiconductor Wafer bonding: Science and Technology and Applications, 97-36, The Electrochemical Society, Pennington, NJ, pp. 229-248, 1998.
〔26〕E. M. Rabinnovich, D. M. Krol, N. A. Kopylov, and K. Gallagher, “Retention of fluorine in silica gel and glass”, J. Am. Cream. Soc., 72, pp. 1229, 1989.
〔27〕S. Cristoloveanu and S. S. Li, Electrical Characterization of Silicon-On-Insulator Materials and Devices, p.2, Kluwer Academic, Boston ,1995.
〔28〕K. Mitani and U. M. Gösele, “Wafer bonding technology for silicon-on-insulator applications: a review”, J. Electron. Mater., 21, pp. 669-676, July 1992.
〔29〕T. A. Langdo, M. T. Currie, A. Lochtefeld, R. Hammond, J. A. Carlin, M. Erdtmann, G. Braithwaite, V. K. Yang, C. J. Vineis, H. Badawi, and M. T. Bulsara, “SiGe-free strained Si on insulator by wafer bonding and layer transfer”, Appl. Phys. Lett., 82 , pp.4256-4258, June 2003.
〔30〕T.A.Langdo, M.T.Currie, A.Lochtefeld, R.Hammond, V.K.Yang, J.A.Carlin, C.J.Vineis, G.Braithwaite, H.Badawi, M.T.Bulsara, and E.A.Fitzgerald, “Preparation of novel SiGe-free strained Si on insulator substrates”, IEEE International SOI Conference Proceedings, pp. 211-212, October 2002.
〔31〕T. Abe, A. Uchiyama, K. Yoshizawa, Y. Nakazato, M. Miyawaki, T. Ohmi, “Surface Impurities Encapsulated by Silicon Wafer Bonding”, Jpn. J. Appl. Phys., 29, pp. L2315-L2318, December 1990.
〔32〕Y. S. Wu, R. S. Feigelson, R. K. Route, D. Zheng, L. A. Gordon, M. M. Fejer, and R. L. Byer, “Improved GaAs Bonding Process for Quasi-Phase-Matched Second Harmonic Generation”, J. Electrochem. Soc.,145, pp. 366-371, January 1998.
〔33〕S. Ogawa, M. Imada, S. Noda, “Analysis of thermal stress in wafer bonding of dissimilar materials for the introduction of an InP-based light emitter into a GaAs-based three-dimensional photonic crystal”, Appl. Phys. Lett., 82, pp. 3406-3408, May 2003.
〔34〕N. Yamamoto, S. Noda, and A. Sasaki, “New realization method for three-Dimensional Photonic Crystal in the Optical Wavelength Region: Experimental Consideration”, Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, 36, pp.1907-1911, March 1997.
〔35〕S. Estrada, A. Huntington, A. Stonas, Xing. Huili, U. Mishra, S. DenBaars, L. Coldren, E. Hu, “n-AlGaAs/p-GaAs/n-GaN heterojunction bipolar transistor wafer-fused at 550–750 °C”, Appl. Phys. Lett., 83, pp.560-562, July 2003.
〔36〕F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes”, Appl. Phys. Lett., 64, pp.2839-2841, May 1994.
〔37〕Y. Okuno, M. Aoki, T. Tsuchiya, and K. Uomi, “Fabrication of (001) InP-based 1.55-µm wavelength lasers on a (110) GaAs substrate by direct bonding (A prospect for free-orientation integration)”, Appl. Phys. Lett. , 67, pp. 810-812 , August 1995.
〔38〕G. E. Höfler, D. A. Vanderwater, D. C. DeFevere, F. A. Kish, M. D. Camras, F. M. Steranka, and I.-H. Tan, “Wafer bonding of 50-mm diameter GaP to AlGaInP-GaP light-emitting diode wafers”, Appl. Phys. Lett., 69, pp. 803-805, August 1996.
〔39〕 R. H. Horng, D. S. Wuu, S. C. Wei, C. Y. Tseng M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, “AlGaInP light-emitting diodes with mirror substrates fabricated by wafer bonding”, Appl. Phys. Lett.,75, pp.3054-3056, November 1999.
〔40〕W. S. Wong, T. Sands, N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates”, Appl. Phys. Lett., 72, pp.599-601, February1998.
〔41〕W. S. Wong, M. Kneissl, P. Mei, D. W. Treat, M. Teepe, and N. M. Johnson, “Continuous-wave InGaN multiple-quantum-well laser diodes on copper substrates”, Appl. Phys. Lett., 78, pp.1198-1200, February 2001.
〔42〕Frank Shi, Kuo-Lih Chang, John Epple, Chao-Feng Xu, K. Y. Cheng, and K. C. Hsieh, “Characterization of GaAs-based n-n and p-n interface junctions prepared by direct wafer bonding”, J. Appl. Phys., 92, pp.7544-7549, December 2002.
〔43〕F. A. Kish, D. A. Vanderwater, M. J. Peanasky, M. J. Ludowise, S. G. Hummel, and S. J. Rosner, “Low-resistance Ohmic conduction across compound semiconductor wafer-bonded interfaces”, Appl. Phys. Lett., 67, pp.2060-2062, October 1995.
〔44〕Y. Okuno, “Investigation on direct bonding of III–V semiconductor wafers with lattice mismatch and orientation mismatch”, Appl. Phys. Lett., 68, pp.2855-2857, May 1996.
〔45〕Y. Okuno, K. Uomi, M. Aoki, T. Taniwatari, M. Suzuki, and M. Kondow, “Anti-phase direct bonding and its application to the fabrication of InP-based 1.55 µm wavelength lasers on GaAs substrates”, Appl. Phys. Lett., 66, pp.451-453, January 1995.

第二章
〔1〕 F. A. Kish, D.A. Vanderwater, M. J. Peanasky, M. L. Ludowise, S. G. Hummel, and S. J. Rosner, “Low-resistance Ohmic conduction across compound semiconductor wafer-bonded interfaces”, Appl. Phys. Lett., 67, pp. 2060-2062, October 1995.
〔2〕Z. L. Liau and D. E. Mull, “Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration”, Appl. Phys. Lett., 56, pp.737-739, February 1990.
〔3〕T. Akatsu, A. Plößs, H. Stenzel, and U. Gösele, “GaAs wafer bonding by atomic hydrogen surface cleaning”, J. Appl. Phys., 86, pp.7146-7150, December 1999.
〔4〕Y. S. Wu, R. S. Feigelson, R. K. Route, D. Zheng, L. A. Gordon, M. M. Fejer, and R. L. Byer, “Improved GaAs Bonding Process for Quasi-Phase-Matched Second Harmonic Generation”, J. Electrochem. Soc.,145, pp. 366-371, January 1998.
〔5〕Donald A. Neamen, Semiconductor Physics & Devices, McGraw-Hill, New York, pp.11 ,1998.
〔6〕Mitsuo Fukuda, Optical Semiconductor Devices, John Wiley & Sons, Inc., p7, 1999.
〔7〕Y. S. Wu, P. C. Liu, R. S. Feigelson, and R. K. Route, “High-temperature healing of interfacial voids in GaAs wafer bonding”, J. Appl. Phys., 91, pp.1973-1977, February 2002.
〔8〕O. Oda, Holmes, H. Yamamoto, M. Seiwa, G. Kano, T. Inoue, M. Mori, H. Shinakura, and M. Oyake, “Defects in and device properties of semi-insulating GaAs”, Semicond. Sci. Technol., 7, pp.A215-A223, January 1992.
〔9〕J.Lagowski, H.C.Gatos, J.M.Psrsey, K.Wada, “Origin of the 0.82-eV electron trap in GaAs and its annihilation by shallow donors”, Appl.Phys.Lett., 40, pp.342-344, February 1982.
〔10〕D. E. Holems, R. T. Chen, K. R. Elliot, C. G. Kirkparick, and P. H. Wu, IEEE Trans. Electron Devices, ED-29, pp. 1045, 1982.
〔11〕C. T. Foxton, J. A. Harvey, and B. A. Joyce, J. Phys. Chem. Solids, 34, pp.1693,1973.
〔12〕Z. L. Liau and D. E. Mull, “Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration”, Appl. Phys. Lett., 56, pp.737-739, February 1990.
〔13〕F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes”, Appl. Phys. Lett., 64, pp.2839-2841, May 1994.
〔14〕R. A. Smith, Semiconductor, Cambridge University Press, Cambridge, Ch.5, 1959.
〔15〕Dieter K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, Inc., 2nd. Edition, p.100, 1998.
〔16〕R. Holm, Electric Contacts Theory and Application, Springer-Verlag, New York ,NY, 1967.
〔17〕 R. Behrensmeier, H. G. Brion, H. Siethoff, P. Veyssiere, and P. Haasen, “High temperature creep and transmission electron microscopy of GaAs”, Mater. Sci. Eng. A-Structural Materials Properties Microstructure & Processing, A137, pp.173-176, May 1991.
〔18〕S. Guruswamy, R. S. Rai, K. T. Faber, and J. P. Hirth, “Deformation behavior of undoped and In-doped GaAs in the temperature range 700–1100 °C”, J. Appl. Phys., 62, pp.4130-4134, November 1987.
〔19〕S. Guruswamy, R. S. Rai, K. T. Faber, J. P. Hirth, J. E. Clemans, S. McGuigan, R. N. Thomas, and W. Mitchel, “Influence of solute doping on the high-temperature deformation behavior of GaAs”, J. Appl. Phys., 65, pp.2508-2512, March 1989.
〔20〕F. Shi, K. L. Chang, J. Epple, C. F. Xu, K. Y. Cheng, and K. C. Hsieh, “Characterization of GaAs-based n-n and p-n interface junctions prepared by direct wafer bonding”, J. Appl. Phys., 92, pp.7544-7549, December 2002.
〔21〕H. Ouyang, J. H. Cheng, C. L. Lu and Y. S. Wu, Nano Lett., Submitted
〔22〕A. Black, A. R. Hawkins, N. M. Margalit, D. I. Babi´c, A. L. Holmes, Jr.,Y.-L. Chang, P. Abraham, J. E. Bowers, and E. L. Hu, “Wafer fusion: materials issues and device results”, IEEE J. Sel. Top. Quantum Electron., 3, pp.943-951, Jun. 1997.
〔23〕Frank Shi, Scott MacLaren, Chaofeng Xu, K. Y. Cheng, and K. C. Hsieh, “Hybrid-integrated GaAs/GaAs and InP/GaAs semiconductors through wafer bonding technology: Interface adhesion and mechanical strength”, J. Appl. Phys., 93, pp.5750-5756, May 2003.
〔24〕R. R. Vanfleet, M. Shverdin, J. Silcox, Z. H. Zhu, and Y. H. Lo, “Interface structures in GaAs wafer bonding: Application to compliant substrates”, Appl. Phys. Lett., 76, pp.2674-2676, May 2000.
〔25〕J. Rachmann and R. Biermann, “Concentration and diffusion of oxygen in GaAs”, Solid State Commun., 7, pp.1771-1774, December 1969.
〔26〕D. S. Ruby, K. Arai, and G. E.Stillman, “Deep-level electron traps in vapor phase epitaxial GaAs grown with oxygen injection”, J. Appl. Phys., 58, pp.825-830, July 1985.
〔27〕J. F. Woods, and N. G. Ainsile, “Role of Oxygen in Reducing Silicon Contamination of GaAs during Crystal Growth”, J. Appl. Phys., 34, pp.1469-1475, May 1963.
〔28〕R. H. Wallis, M. -A. di Forte Poission, M. Bonnet, G. Beuchet and J. -P. Duchemin, “Effect of oxygen injection during VPE growth of GaAs and AlxGa1-xAs”, Eighth Inst. Phys. Conf. Ser., 56, pp. 73-82, 1981.

第三章
〔1〕Y. Okuno, K. Uomi, M. Aoki, T. Taniwatari, M. Suzuki, and M . Kondow, “Anti-phase direct bonding and its application to the fabrication of InP-based 1.55 µm wavelength lasers on GaAs substrates”, Appl. Phys. Lett., 66, pp.451-453, January 1995.
〔2〕Yae Okuno, “Investigation on direct bonding of III–V semiconductor wafers with lattice mismatch and orientation mismatch”, Appl. Phys. Lett., 68, pp.2855-2857, May 1996.
〔3〕F. A. Kish, D. A. Vanderwater, M. J. Peanasky, M. J. Ludowise, S. G. Hummel, and S. J. Rosner, “Low-resistance Ohmic conduction across compound semiconductor wafer-bonded interfaces”, Appl. Phys. Lett., 67, pp.2060-2062, October 1995.
〔4〕Frank Shi, Scott MacLaren, Chaofeng Xu, K. Y. Cheng, and K. C. Hsieh, “Hybrid-integrated GaAs/GaAs and InP/GaAs semiconductors through wafer bonding technology: Interface adhesion and mechanical strength”, J. Appl. Phys., 93, pp.5750-5756, May 2003.
〔5〕A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata, I. Hino, and T. Yuasa, “Evidence for the existence of an ordered state in Ga0.5In0.5P grown by metalorganic vapor phase epitaxy and its relation to band-gap energy”, Appl. Phys. Lett., 50, pp.673-675, March 1987.
〔6〕P. Bellon, J. P. Chevaller, G. P. Martin, E. Dupont-Nivet, C. Thiebaut, and J. P. Andre, “Chemical ordering in GaxIn1–xP semiconductor alloy grown by metalorganic vapor phase epitaxy”, Appl. Phys. Lett., 52, pp.567-569, February 1988.
〔7〕D. Hull and D. J. Bacon, Introduction to Dislocations, Vol. 37, p. 184,1984.
〔8〕G. Kästner, T. Akatsu, S. Senz, A. Plößl, U. Gösele, “Large-area wafer bonding of GaAs using hydrogen and ultrahigh vacuum atmospheres”, Appl. Phys. A, A70, pp.13-19, January 2000.
〔9〕Frank Fournel, Hubert Moriceau, Bernard Aspar, Karine Rousseau, Joël Eymery, Jean-Luc Rouviére, and Noël Magnea, “Accurate control of the misorientation angles in direct wafer bonding”, Appl. Phys. Lett., 80, pp.793-795, February 2002.
〔10〕James W. Mayer and S. S. Lau, Electronic Materials Science: For Integrated Circuits in Si and GaAs, New York, 1990.

第四章
〔1〕F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor waferbonded transparent-substrate (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes”, Appl. Phys. Lett.,64, pp.2839-2841, May 1994.
〔2〕Y. Ohiso, H. Okamoto, R. Iga, K. Kishi, K. Tateno, C. Amano, “1.55-μm buried-heterostructure VCSELs with InGaAsP/lnP-GaAs/AlAs DBRs on a GaAs substrate”, IEEE Journal of Quantum Electronics, 37, pp.1194-1202, September 2001.
〔3〕R. H. Horng, D. S. Wuu, S. C. Wei, and C. Y. Tseng, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, “AlGaInP light-emitting diodes with mirror substrates fabricated by wafer bonding”, Appl. Phys. Lett., 75, pp.3054-3056, November 1999.
〔4〕Y. Okuno, K. Uomi, M. Aoki, T. Taniwatari, M. Suzuki, and M. Kondow, “Anti-phase direct bonding and its application to the fabrication of InP-based 1.55 µm wavelength lasers on GaAs substrates”, Appl. Phys. Lett., 66, pp.451-453, January 1995.
〔5〕G. E. Höfler, D. A. Vanderwater, D. C. DeFevere, F. A. Kish, M. D. Camras, F. M. Steranka, and I.-H. Tan, “Wafer bonding of 50-mm diameter GaP to AlGaInP-GaP light-emitting diode wafers”, Appl. Phys. Lett., 69, pp.803-805, August 1996.
〔6〕M. Bruel, B. Asper and A.J.A HervЁ, “Smart-Cut: A New Silicon On Insulator Material Technology Based on Hydrogen Implantation and Wafer Bonding”, Jpn. J. Appl. Phys.,36, pp.1636-1641, March 1997.
〔7〕 J. Wan, R. Venugopal, M. R. Melloch, H. M. Liaw, and W. J. Rummel, “Growth of crack-free hexagonal GaN films on Si(100)”, Appl. Phys. Lett., 79, pp1459-1461, September 2001.
〔8〕L. Wang, X. Liu, Y. Zan, J. Wang, D. Lu, and Z. Wang, Wurtzite GaN epitaxial growth on a Si(001) substrate using -Al2O3 as an intermediate layer”, Appl. Phys. Lett., 72, pp.109-111, January 1998.
〔9〕X. Zhang, S. Chua, P. Li, K. Chong, and Z. Feng, “Enhanced optical emission from GaN films grown on a silicon substrate”, Appl. Phys. Lett., 74, pp.1984-1986, April 1999.
〔10〕Y. H. Luo, J. Wan, R. L. Forrest, J. L. Liu, G. Jin, M. S. Goorsky, and K. L. Wang, “Compliant effect of low-temperature Si buffer for SiGe growth”, Appl. Phys. Lett., 78, pp.454-456, January 2001.
〔11〕T. Ueno, T. Irisawa, Y. Shiraki, A. Uedono, S. Tanigawa, R. Suzukic, T. Ohdairac, T. Mikado, “Characterization of low temperature grown Si layer for SiGe pseudo-substrates by positron annihilation spectroscopy”, Journal of Crystal Growth 227, pp 761-765, July 2001.
〔12〕E. M. Rehder, C. K. Inoki, T. S. Kuan, T. F. Kuech, “SiGe relaxation on silicon-on-insulator substrates: An experimental and modeling study”, J. Appl. Phys., 94, pp.7892-7903, December 2003.
〔13〕T. Tezuka, N. Sugiyama, S. Takagi, “Dislocation-free relaxed SiGe-on-insulator mesa structures fabricated by high-temperature oxidation”, J. Appl. Phys., 94, pp.7553-7559, December 2003.
〔14〕C. W. Pei, B. Turk, W. I. Wang, and T. S. Kuan, “Mechanism of the reduction of dislocation density in epilayers grown on compliant substrates”, J. Appl. Phys., 90, pp.5959-5963, December 2001.
〔15〕 F. E. Ejeckam, Y. H. Lo, S. Subramanian, H. Q. Hou, and B. E. Hammons, “Lattice engineered compliant substrate for defect-free heteroepitaxial growth”, Appl. Phys. Lett., 70, pp.1685-1687, March 1997.
〔16〕Y. H. Lo, U. S. Pat. No.5,981,400 ,1999.
〔17〕D. Hull and D. J. Bacon, Introduction to Dislocations, Vol. 37, p184,1984.
〔18〕G. Kästner, U.Gösele, T. Y. Tan, “A model of strain relaxation in hetero-epitaxial films on compliant substrates”, Appl. Phys. A, A 66, pp.13-22, January 1998.
〔19〕Z. H. Zhu, R. Zhou, F. E. Ejeckam, Z. Zhang, J. Zhang, J. Greenberg, Y. H. Lo, H. Q. Hou, and B. E. Hammons, “Growth of InGaAs multi-quantum wells at 1.3 µm wavelength on GaAs compliant substrates”, Appl. Phys. Lett., 72, pp.2598-2610, May 1998.

〔20〕St. Senz, G. Kästner, U. Gösele, and V. Gottschalch, “Relaxation of an epitaxial InGaAs film on a thin twist-bonded (100) GaAs substrate”, Appl. Phys. Lett., 76, pp.703-705, February 2000.
〔21〕D. A. Vanderwater, I.-H. Tan, G. E. Ho¨fler, D. C. Defevere, and F. A. Kish, “High-Brightness AlGaInP Light Emitting Diodes”, Proc. IEEE, 85, pp.1752-1764, November 1997.
〔22〕Z. L. Liao and D. E. Mull, “Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration”, Appl. Phys. Lett., 56, pp.737-739, February 1990.
〔23〕P. Kopperschmidt, St. Senz, R. Scholz, and U. Gösele, “"Compliant" twist-bonded GaAs substrates: The potential role of pinholes”, Appl. Phys. Lett., 74, pp.374-376, January 1999.
〔24〕Z.C. Zhang, S.Y. Yang, F. Q. Zhang, B. Xu, Y. P. Zeng, Y. H. Chen, Z. G. Wang, “In0.25Ga0.75As films growth on the thin GaAs/AlAs buffer layer on the GaAs(001) substrate”, Applied surface science, 217, pp.268-274, July 2003.
〔25〕Y. Yu, X. Qin, B. Huang, J. Wei, H. Zhou, J. Pan, W. Chen, Y. Qi, X. Zhang, and Z. Ren, “MOCVD growth of strain-compensated multi-quantum wells light emitting diode”, Vacuum, 69, pp.489-493, January 2003.
〔26〕C. P. Kuo, S. K. Vong, R. M. Cohen, and G. B. Stringfellow, “Effect of mismatch strain on band gap in III-V semiconductors”, J. Appl. Phys., 57, pp.5428-5432, June 1985.
〔27〕R. H. Esser, K. D. Hobart, and F. J. Kub, “Directional diffusion and void formation at a Si (001) bonded wafer interface”, J. Appl. Phys., 92, pp.1945-1949, August 2002.
〔28〕S. Mack, H. Baumann, U. Gösele, H. Werner, and R. Schlögl, “Analysis of Bonding-Related Gas Enclosure in Micromachined Cavities Sealed by Silicon Wafer Bonding”, J. Electrochem. Soc.,144, pp.1106-1111, March 1997.
〔29〕Y. S. Wu, R. S. Feigelson, R. K. Route, D. Zheng, L. A. Gordon, M. M. Fejer, and R. L. Byer, “Improved GaAs Bonding Process for Quasi-Phase-Matched Second Harmonic Generation”, J. Electrochem. Soc.,145, pp. 366-371, January 1998.
〔30〕K. Tone, M. Yamada, Y. Ide, and Y. Katayama, “Characterization of Oxidized GaAs (001) Surfaces Using Temperature Programed Desorption and X-Ray Photoelectron Spectroscopy”, Jpn. J. Appl. Phys., Part 1, 31, pp.L721-L724, June 1992.
〔31〕R. H. Horng, , W.C. Peng, D.S. Wuu; W. J. Ho, Y.S. Huang, “Surface treatment and electrical properties of directly wafer-bonded InP epilayer on GaAs substrate”, Solid-State Electronics, 46, pp.1103-1108, August 2002.
〔32〕S. J. Jain, M. Willander, and H. Maes, “Stresses and strain in epilayers, stripes and quantum structures of III-V compound semiconductors”, Semicond. Sci. Technol., 11, pp.641-647, January 1996.
〔33〕F. A. Kish, D. A. Vanderwater, M. J. Peanasky, M. J. Ludowise, S. G. Hummel, and S. J. Rosner, “Low-resistance Ohmic conduction across compound semiconductor wafer-bonded interfaces”, Appl. Phys. Lett., 67, pp.2060-2062, October 1995.
〔34〕Z.C. Zhang, S.Y. Yang, F.Q. Zhang, B. Xu, Y.P. Zeng, Y.H. Chen, and Z.G. Wang, “In0.25Ga0.75As films growth on the thin GaAs/AlAs buffer layer on the GaAs(001) substrate”, Applied Surface Science, 217, pp.268–274, July 2003.
〔35〕J. W. Mathews and A. E. Blakeslee, “Defects in epitaxial multilayers. I. Misfit dislocations”, J. Crystal Growth, 27, pp.118-125, December 1974.

第五章
〔1〕 F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor waferbonded transparent-substrate (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes”, Appl. Phys. Lett.,64, pp.2839-2841, May 1994.
〔2〕G. Kästner , T. Akatsu , S. Senz, A. Plössl, U. Gösele, “Large-area wafer bonding of GaAs using hydrogen and ultrahigh vacuum atmospheres”, Appl. Phys. A, A 70, pp.13-19, January 2000.
〔3〕 P. Kopperschmidt, S. Senz, R. Scholz, U. Gösele, “"Compliant" twist-bonded GaAs substrates: The potential role of pinholes”, Appl. Phys. Lett., 74, pp.374-376, January 1999.
〔4〕 R.R. Vanfleet, M. Shverdin, J. Silcox, Z.H. Zhu, Y.H. Lo, “Interface structures in GaAs wafer bonding: Application to compliant substrates”, Appl. Phys. Lett., 76, pp.2674-2676, May 2000.
〔5〕 F. A. Kish, D. A. Vanderwater, M. J. Peanasky, M. J. Ludowise, S. G. Hummel, and S. J. Rosner, “Low-resistance Ohmic conduction across compound semiconductor wafer-bonded interfaces”, Appl. Phys. Lett., 67, pp.2060-2062, October 1995.
〔6〕C. Vasant Kumar, A. Mansingh, “Effect of target-substrate distance on the growth and properties of rf-sputtered indium tin oxide films”, J. Appl. Phys., 65, pp.1270-1280, February 1989.
〔7〕 S. Knickerbocker, A. Kulkarni, “Calculation of the figure of merit for indium tin oxide films based on basic theory”, J. Vac. Sci. Technol. A Vac. Surf. Films, 13, pp.1048-1053, May 1995.
〔8〕 B. Chiou, S. Hsieh, “RF magnetron-sputtered indium tin oxide film on a reactively ion-etched acrylic substrate”, Thin Solid Films, 229, pp.146-155, June 1993.
〔9〕S. Ishibashi, Y. Higuchi, Y. Ota, K. Nakamura, “Low resistivity indium–tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films”, J. Vac. Sci. Technol., A, Vac. Surf. Films, 8, pp.1403-1406, May 1990.
〔10〕 A. K. Kulkami, T. Lim, M. Khan, K. H. Schulz, “Electrical, optical, and structural properties of indium-tin-oxide thin films deposited on polyethylene terephthalate substrates by rf sputtering”, J. Vac. Sci. Technol. A, Vac. Surf. Films, 16, pp.1636-1640, May 1998.
〔11〕 W. F. Wu, B. S. Chiou, “Properties of radio-frequency magnetron sputtered ITO films without in-situ substrate heating and post-deposition annealing”, Thin Solid Films, 247, pp.201-207, July 1994.
〔12〕 A. Salehi, “The effects of deposition rate and substrate temperature of ITO thin films on electrical and optical properties”, Thin Solid Films, 324, pp.214-218, July 1998.
〔13〕 Jin Ma, Dehang Zhang, Junqing Zhao, Chuenyu Tan, Tianlin Yang, Honglei Ma, “Preparation and characterization of ITO films deposited on polyimide by reactive evaporation at low temperature”, Applied Surface Science, 151, pp.239-243, October 1999.
〔14〕Joseph George, C.S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films”, Surface and Coatings Technology, 132, pp.45-48, October 2000.
〔15〕 H. Kim, C. M. Gilmore, A. Piqué , J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices”, J. Appl. Phys., 86, pp.6451-6461, December 1999.
〔16〕S. Bhagwat, R. P. Howson, “Use of the magnetron-sputtering technique for the control of the properties of indium tin oxide thin films”, Surf. Coat. Technol., 111, pp.163-171, January 1999.
〔17〕 D. V. Morgan, Y. H. Aliyu, R. W. Bunce, A. Salehi, “Annealing effects on opto-electronic properties of sputtered and thermally evaporated indium-tin-oxide films”, Thin Solid Films, 312, pp.268-272, January 1998.
〔18〕H. J. Krokoszinski, R. Oesterlein, “Post-deposition annealing effects in electron-beam-evaporated indium tin oxide thin films”, Thin Solid Films, 187, pp.179-186, May 1990.
〔19〕T.Maruyama, K. Fukui, “Indium tin oxide thin films prepared by chemical vapour deposition”, Thin Solid Films, 203, pp.297-302, August 1991.
〔20〕H. Kim, J. S. Horwitz, G.Kushto, “Effect of film thickness on the properties of indium tin oxide thin films”, J. Appl. Phys., 88, pp.6021-6025, November 2000.
〔21〕M. J, S. Y. Li , J. Q. Zhao, H. L. Ma, “Preparation and properties of indium tin oxide films deposited on polyester substrates by reactive evaporation”, Thin Solid Films, 307, pp.200-202, October 1997.
〔22〕M. J. Alam, D. C. Cameron, “Optical and electrical properties of transparent conductive ITO thin films deposited by sol–gel process”, Thin Solid Films, 377, pp.455-459, December 2000.
〔23〕S. S. Kim, S. Y. Chio, C. G. Park, H. W. Jin, “Transparent conductive ITO thin films through the sol-gel process using metal salts”, Thin Solid Films, 347, pp.155-160, June 1999.
〔24〕Y. S. Wu, R. S. Feigelson, R. K. Route, D. Zheng, L. A. Gordon, M. M. Fejer, and R. L. Byer, “Improved GaAs Bonding Process for Quasi-Phase-Matched Second Harmonic Generation”, J. Electrochem. Soc.,145, pp. 366-371, January 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top