跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/03/16 10:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖泓洲
研究生(外文):Hung-Chou Liao
論文名稱:氧化鋅奈米柱的後熱處理和氧化鎂摻雜研究
論文名稱(外文):Post Annealing and MgO Doping of ZnO nanorods
指導教授:陳三元陳三元引用關係
指導教授(外文):San-Yuan Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:97
中文關鍵詞:氧化鋅熱處理摻雜
外文關鍵詞:ZnOannealingdoping
相關次數:
  • 被引用被引用:11
  • 點閱點閱:401
  • 評分評分:
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用化學溶液法在低溫環境中過飽和析出成長氧化鋅奈米柱在氧化鋅薄膜的矽基板上,並分析氧化鋅奈米柱和氧化鎂包覆氧化鋅奈米柱後經熱處理後之結構及光學特性。氧化鋅奈米柱經過後熱處理均可大幅增加光學品質,且在高溫下氧化鋅奈米柱的晶體結構也有明顯改變。氧化鎂包覆氧化鋅奈米柱後經熱處理後在化學特性分析中可以看出,鎂原子可以由氧化鋅奈米柱的缺陷路徑成功的擴散至奈米結構中,並且與鋅及氧元素產生化學鍵結反應。而在光學特性的研究上,氧化鋅奈米柱經過熱處理可改變可見光放射位置和強度,我們還發現在紫外光放射有藍位現象,也證明鎂原子擴散至奈米結構,形成氧化鎂摻雜的氧化鋅奈米柱。經由本研究的結果顯示,我們可以利用常溫的水溶液合成法結合熱處理可以製備出規則排列氧化鎂摻雜的氧化鋅奈米柱。
Single-crystalline zinc oxide (ZnO) nanorod array was synthesized on Si substrate coated with buffered ZnO by low-temperature chemical solution method. The physical and optical properties of annealed ZnO nanorods and MgO-doped ZnO nanorod arrays were investigated.
The post annealing dramatically improve the optical quality of the ZnO nanorods. The ratio of the intensity of ultraviolet (UV) emission (IUV) to that of deep level emission (IDLE) can be enhanced to 30 times as those of original ones.
For MgO-doped ZnO nanorods, there was blue shift phenomenon in UV emission. The obtained results implied that magnesium atoms can diffuse into nanostructures to form chemical bonds with zinc and oxygen ions through the paths of defects. This study demonstrated that low- temperature solution synthesis in combination with annealing treatment can be used to synthesize highly arrayed and MgO-doped zinc oxide nanorods.
目錄
頁次
中文摘要 Ⅰ
英文摘要 Ⅱ
致謝 Ⅲ
目錄 Ⅳ
圖目錄 Ⅶ
表目錄 ⅩⅠ
第一章、緒論 1
第二章、文獻回顧 3
2-1一維奈米材料 3
2-2一維奈米材料成長機制 4
2-3製備氧化鋅奈米線的方法 5
2-3-1鋅蒸氣氧化法 6
2-3-2化學氣相沈積法 6
2-3-3物理氣相法(VLS) 7
2-3-4模板法 7
2-3-5化學溶液法 8
2-4氧化鋅材料基本性質與應用 8
2-5發光機制 10
2-5-1紫外光放射 (UV emission) 10
2-5-2綠光放射 (Green emission) 11
2-6氧化鋅的摻雜 12
第三章、實驗方法與步驟 15
3-1實驗流程圖 15
3-2試片製備 16
3-2-1基板製備與清洗 16
3-2-2反應溶液的配製 16
3-2-3氧化鎂包覆處理 17
3-2-4退火處理 17
3-3實驗設備 18
3-3-1射頻磁控濺鍍系統 (RF Magnetron Sputter System) 18
3-3-2恆溫反應系統 (PID Control Temperature System) 19
3-4 分析設備與方法 19
3-4-1 掃瞄式電子顯微鏡 (SEM) 19
3-4-2光激螢光光譜儀(PL) 20
3-4-3 X光繞射分析 (XRD) 20
3-4-4穿透式電子顯微鏡(TEM) 21
3-4-4化學分析電子儀分析(ESCA) 21
第四章、氧化鋅奈米柱的後熱處理 23
4-1氧化鋅奈米柱的基本性質和成長特性 23
4-2 H2/N2 (5%/95%)後熱處理 25
4-2-1光學性質分析 25
4-2-2表面形貌觀察 26
4-2-3微結構特性分析 26
4-3氧氣和氮氣的後熱處理 27
4-3-1光學性質分析 27
4-3-1表面形貌觀察 28
4-3-1微結構特性分析 29
第五章、氧化鎂的摻雜 30
5-1控制氧化鎂包覆量 31
5-2氧化鎂包覆機制 32
5-3氧氣氛熱處理效應 32
5-3-1光學性質分析 33
5-3-2表面形貌效應與微結構特性分析 35
5-3-3化學鍵結能分析 36
5-4氮氣氛熱處理效應 37
5-4-1光學性質分析 37
5-4-2表面形貌效應與微結構特性分析 38
5-4-3化學鍵結能分析 39
5-5 H2/N2氣氛熱處理效應 39
5-5-1光學性質分析 39
5-5-2表面形貌效應與微結構特性分析 40
5-5-3化學鍵結能分析 41
第六章、結論 42
參考文獻 44
1. Numerical Data and Functional Relationships in Science and Technology./v.22, Subvolume a. Intrinsic Properties of Group ⅣElements and Ⅲ-Ⅴ, Ⅱ-Ⅵ andⅠ-Ⅶ Compounds., Berlin: /Springer-Verlag,/ 1987.
2. Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, T. Yao, J. Appl. Phys., 84, 3912 (1998)
3. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Appl. Phys. Lett., 72, 3270 (1998)
4. D. C. Reynolds, D. C. Lock and B. Jogai, Solid State Commun., 99, 873 (1996)
5. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, Appl. Phys. Lett., 70, 2230 (1997)
6. S. Iijima, Nature, 354, 56 (1991)
7. 張立德,奈米材料和奈米結構,2002,滄海書局
8. S. S. Brenner and G. W. Sears, Acta Metallurgica, Vol. 4, May (1956)
9. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., Vol. 4 (5), 89 (1964)
10. William E. Buhro, Timothy J. Trentler, Kathleen M. Hickman, Science, 270, 1791 (1995)
11. Peidong Yang and Charles M. Lieber, Science, 273, 1836 (1996)
12. Y. Wu, P. Yang, J. Am. Chem. Soc., 123, 3165 (2001)
13. Zhou, Zuowan; Peng, Weiming; Ke, Shaoying; Deng, Hai, Journal of Materials Processing Technology,89, 415 (1999)
14. Minoru Satoh, Norio Tanaka, Yoshikazu Ueda, Shigeo Ohshioand Hidetoshi Saitoh, Japanese Journal of Applied Physics, 38, L586 (1999)
15. Michael H. Hwang, Science, 292, 1897 (2001)
16. Wang, Y.W.; Zhang, L.D.; Wang, G.Z.; Peng, X.S.; Chu, Z.Q.; Liang, Journal of Crystal Growth, 234, 171 (2002)
17. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.-J. Choi, Advanced Functional Materials, 12(5), 323 (2002)
18. Lyu, Seung Chul; Zhang, Ye; Ruh, Hyun; Lee, Hwack-Joo; Shim, Hyun-Wook; Suh, Eun-Kyung; Lee, Cheol Jin, Chemical Physics Letters, 363, 134 (2002)
19. Li, Seu Yi; Lee, Chia Ying; Tseng, Tseung Yuen, Journal of Crystal Growth, 247, 357 (2003)
20. Zheng, M.J.; Zhang, L.D.; Li, G.H.; Shen, W.Z., Chemical Physics Letters, 363, 123 (2002)
21. Yuan-Chung Wang, Electrochemical and Solid-State letters, 5, C53 (2002)
22. Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S.-E., Chemistry of Materials, 13, 4395 (2001)
23. J. Q. Hu, Synthesis of uniform hexagonal prismatic ZnO whiskers, 14, 1216, (2002)
24. M. J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen, Chemical Physics Letters 363, 123 (2002)
25. Y. C. Wang, I. C. Leu, M. H. Hon, Electrochemical and Solid-State Letters, 5,4, C53 (2002)
26. H. Nagayama, H. Honda and H. Kawahara, J. Electrochem. Soc., 135, 2013 (1988)
27. S. Deki, Y. Aoi, O. Hiroi and A. Kajinami, Chem. Lett., 433 (1996)
28. S.Yamabi and H.Imai, Chem. Lett., 30, 220 (2001)
29. S.Yamabi and H.Imai, Chem. Lett., 14, 609 (2002)
30. K. Tsukuma, T. Akiyama and Imai, J. Non-Cryst. Solid, 210, 48 (1997)
31. M. Abe and Y. Tamaura, Jpn. J. Appl. Phys. 22, L511 (1983)
32. M. Izaki and O. Shinohara, Adv. Mater., 13, 142. (2001)
33. Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, T. Yao, J. Appl. Phys., 84, 3912 (1998)
34. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Appl. Phys. Lett., 72, 3270 (1998)
35. D. C. Reynolds, D. C. Lock and B. Jogai, Solid State Commun., 99, 873 (1996)
36. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, Appl. Phys. Lett., 70, 2230 (1997)
37. D. C. Look, Material Science and Engineering B80 383-387 (2001)
38. W. S. Hu, Z. G. Liu, R. X. Wu, Y.-F. Chen, W. Ji, T. Yu and D. Feng, Appl.Phys. Lett., 71, 548 (1997)
39. 郭旭祥,國立成功大學材料科學及工程學系碩士論文(2000)
40. W. -C. Shin and M. -S. Wu, J. Cryst. Growth 137, 319 (1994)
41. Jun Koike, Kazunobu Shimoe and Hideharu Ieki, Jpn., J. Appl. Phys., 32 2337-2340 (1993).
42. M. S. Ramanchalam, A. Rohatgi, W. B. Carter, J. P. Shaffer, and T.K. Gupta, J. Electron Mater. 24, 413(1995)
43. K. L. Chopra and S. R. Das, (Plenum, New York, 1983).
44. H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, S. -E. Lindquist, J. Phys. Chem. B, 101[14], 2598-2601 (1997).
45. 陳彥宏,國立清華大學材料科學工程學系碩士論文(2001)
46. D. R. Vij, N. Singh, Nova Science Publishers, N. Y., (1998)
47. X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, X. G. Kong, Journal of Luminescence, 99, 149 (2002)
48. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
49. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, J. Appl. Phys., 79 (10), 7983 (1996)
50. Bixia Lin and Zhuxi Fu, Yunbo Jia, Appl. Phys. Lett.,79[7], 943-945 (2001).
51. Wei Li, Dongsheng Mao, Fumin Zhang, Xi Wang, Xianghuai Liu, Shichang Zou, Yukun Zhu, Qiong Li, Nuclear Instruments and Methods in Physics Research B, 169, 59 (2000)
52. S. Bethke, H. Pan and B. W. Wessels, Appl. Phys. Lett., 52, 138 (1988)
53. H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, D. C. Look, Appl. Phys. Lett., 77, 3761 (2000)
54. Shigemi Kohiki, Mikihiko Nishitani, and Takahiro Wada., J. Appl. Phys. 75 (4), 15 pp2069-2072 (1994)
55. R. Wang, Laura L. H. King and Arthur W. Sleight., J. Mater Res. 11 (7) pp1659-1664 (1996)
56. B. Sang, A. Yamada, M. Konagai., Solar Energy Material and Solar cell 49 pp 19-26 (1997)
57. Kwang Joo Kim and Young Ran Park, Appl. Phys. Lett., 78, 475 (2001)
58. M. Miyazaki, K. Sato, A. Mitsui, H. Nishimura., J. Non-Crystal Solid 201 pp895 (1997)
59. 楊明輝,工業材料,2001 年11 月
60. R. F. Service Science 276 pp 895 (1997)
61. Kwang Joo Kim and Young Ran Park, Appl. Phys. Lett., 78, 475 (2000)
62. Xin-Li Guo, Hitoshi Tabata, Tomoji Kawai, Journal of Crystal Growth, 237, 544 (2002)
63. Manabu Komatsu, Naoki Ohashi, Hajime Haneda, Applied Surface Science, 189, 349 (2002)
64. Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, H. W. White, J. Crystal growth, 216, 330 (2000)
65. M. Yan, H. T. Zhang, E. J. Widjaja, R. P. H. Chang, J. Appl. Phys., 94, 5240 (2003)
66. W. J. Li, E. W. Shi, Journal of Crystal Growth, 203, 186 (1999)
67. J. Zhang, L. Sun, Chem. Mater., 14, 4172 (2002)
68. 陳虹蓓,國立交通大學材料科學工程學系碩士論文(2004)
69. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao , Appl. Phys. Lett., 70, 2230 (1997)
70. E. G. Bylander, J. Appl. Phys., 49, 1188 (1978)
71. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykall, and P. Yang, Angew. Chem. Int. Ed., 42, 3031 (2003).
72. N. Arul Dhas, A. Zaban, A. Gedanken, Chem. Mater. 11 806 (1999)
73. G.N. Panin, A.N. Baranov, Young-Jei Oh, Tae Won Kang, Current Applied Physics 4 647 (2004)
74. Chen-Hao Ku, Hsuen-Han Chiang, Jih-Jen Wu,Chemical Physics Letters, 404 132 (2005)
75. Shinobu Fujihara, Yusuke Ogawa, and Asayo Kasai, Chem. Mater. 16, 2965 (2004)
76. 汪建民,材料分析,1998,中國材料科學學會
77. Y. F. Lu,a) H. Q. Ni, Z. H. Mai, and Z. M. Ren, Appl. Phys. Lett., 88, 498 (2000)
78. S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, Appl. Phys. Lett., 84, 5022 (2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top