參考文獻:
1. 林建甫,張焯然,1997,「GARCH 模型條件變異數結構變動的檢定」 經濟論文,25:2,201-225。2. 高櫻芬,呂仁廣,林建甫,2001,「變異數結構改變的SWARCH 模型估.計:台灣股價報酬之實證研究」,證券市場發展季刊,第13卷,第1期,頁64-78。3. Antonious, Antonio and Constantine E. Vorlow, 2003, “Wavelet Exploratory Analysis of the FTSE ALL SHARE Index” Working paper, April
4. Bakshi, G. S., C. Cao, and Z. Chen, 1997, “Empirical Performance od Alternatice Option Pricing Models” Journal of Finance, Vol. 52, 2003-2049
5. Bates, D. S., 1996, “Jumps and Stochastic Volatility : Exchange Rate Processes Implicit in Deutsche Mark Options” The Review of Financial Studies, Vol. 9, 69-107
6. Black, F., and Scholes, M., 1973, “The Valuation of Option and Corporate Liabilities” Journal of Political Economy, 27, 399-417
7. Bollerslev. T., 1986, “Generalized Autoregressive Conditional Heteroskedasticity” Journal of Econometrics, 31, 307-327
8. Buraschi, Andrea, and Jens C. Jackwerth, 1998, “Explaining Option Prices : Deterministic vs. Stochastic Models” Working Paper, London Business School
9. Cao, C. Q. and R. S. Tsay, 1992, “Nonlinear Time-Series Analysis of Stock Volatilities” Journal of Applied Econometrics, Vol. 7, Dec., S165-S185
10. Cox, John C. and A. Ross Stephen, 1976, “The Valuation of Options for Alternative Stochastic Processes” Journal of Financial Economics 3 , 145-166
11. Daubechies, I., Ten Lectures on Wavelets, Pa. :Society for Industrial and Applied Mathematics, Philadelphia ,1992.
12. Derman, Emanuel, and Iraj Kani, 1994a, “The Volatility Smile and its Implied Tree” Quantitative Strategies Research Notes, Goldman Saches , New York.
13. Derman, Emanuel, and Iraj Kani, 1994b, “Riding on the Smile” Risk 7, 32-39
14. Duan, J. C., 1995, “The GARCH Option Pricing Model” Mathematical Finance, 5, 13-32
15. Dumas, Bermard, Jeff Fleming, and Robert E. Whaley, 1998, “Implied Volatility Functions : Empirical Tests” Journal of Finance, Vol. 53, 2059-2106
16. Dupire, Bruno, 1994, “Pricing with a Smile” Risk 7 , 18-20
17. Dupire, Bruno, 1997, “Pricing and Hedging with Smiles” ; in Michael A. H. Dempster and Stanley R. Pliska, eds.: Mathematics of Derivative Securities (Cambridge University Press, Cambridge, U.K.)
18.Engle, R., 1982, “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of UK Inflation” Econometrica, 50, 987-1008
19. Gastineau, G. L., 1977, “An Index of Listed Option Premiums” Financial Analysts Journal, Vol. 30 , 70-75.
20. Geske R., “The Valuation of Corporate Liabilities as Compound Options” Journal of Financial and Quantitative Analysis , No. 4 , 1979, 541-552
21. Lee, Hahn Shik, 2001. “Price and Volatility Spillovers in Stock Markets: A Wavelet Analysis” Working Paper
22. Hamilton, James D., 1989. “A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle” Econometrica, Vol. 57, No. 2, Mar., 357-384
23. Hamilton, James D. and Raul Susmel, 1994, “Autoregressive Conditional Heteroskedasticity and Changes in Regime” Journal of Econometrics, 64 (1994) , 307-333
24. Hull, John and Alan White, 1987, “The Pricing of Options on Assets with Stochastic Volatilities,” Journal of finance, Vol. 42 No.2 (Jun.), 281-300
25. Heston S. L., 1993. “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options” The Review of Financial Studies, Vol. 6, No. 2 , 327-343
26. Heston, S. L. and S. Nandi, 2000, “A Closed-Form GARCH Option Valuation Model” Review of Financial Studies, 13, 585-625
27. Javaheri, Alireza, Paul Wilmott and Espen G. Haug, 2002, “GARCH and Volatility Swaps,” Wilmott Technical Article.
28. Jeng, Jenher, 2001. “Wavelet Methodology for Advanced Nonparametric Curve Estimation: from Confidence Band to Sharp Adaptation”
29. Mallat, S., 1989, “A Theory for Multiresolution Signal Decomposition : The Wavelet Rrpresentation” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, pp. 674-693
30. Mallat, S., A Wavelet Tour of Signal Processing, Academic Press, Academic Press, 1998.
31. Pagan, A. R. and Y. S. Hong, 1991, “Nonparametric Estimation and the Risk Premium” In : Barnett, W.A., Powell, A.J., Tauchen, G.E. (Eds.), Noparametric and Semiparametric Methods in Economic Theory and Econometrics. Cambridge University Press, Cambridge, pp. 51-75
32. Pagan, A. R. and G. W. Schwert, 1988, “Alternative Models for Conditional Stock Volatility” Journal of Econometrics, 45, 267-290
33. Pagan, A. R. and A. Ullah, 1998, “The Econometric Analysis of Methods with Risk Terms” Journal of Applied Econometrics, 3, 87-105
34. Percival, D. B. and A.T. Walden, 2000, “Wavelet Methods for Time Series Analysis” Cambridge University Press, New York, series in Statistical and Probabilistic Mathematics.
35. Rubinstein, Mark, 1994, “Implied Binomial Trees” Journal of Finance, Vol. 49, 771-818
36. Schwert, G. William, 1989, “Why Does Stock Market Volatility Change Over Time?” The Journal of Finance, Vol. 44, No. 5, Dec., 1115-1153
37. Scott, L. O., 1997, “Pricing Stock Options in a Jump-Diffusion Model with Stochastic Volatility and Interest Rates : Applications of Fourier Inversion Methods” Mathematical Finance, Vol. 7, 413-426
38. Stein, E. M. amd J. C. Stein, 1991, “Stock Price Distribution with Stochastic Volatility : An Analytic Approach” The Review of Financial Studies, Vol. 4 , 727-752
39. Vidalovic, B., Statistical Modeling by Wavelets, Wiley, New York, 1999.
40. Wiggins, J. B., 1987, “Option Values under Stochastic Volatility : Theory and Empirical Estimates” Journal of Financial Economy, Vol. 19, 351-372