跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 00:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宏儒
研究生(外文):hungju,tsai
論文名稱:透過802.11bWLAN來增進GPRS的傳輸速率
論文名稱(外文):Increasing GPRS Data Transfer Throughput via The Assistance of WLAN
指導教授:王協源
指導教授(外文):shie-yuan wang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:77
中文關鍵詞:廣域平行GPRS
外文關鍵詞:GPRSWLAN802.11trunkpararell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
近來由於網路的普及, 許多使用者需要隨時隨地的使用網路資源. 舉例來說, 使用者可能剛好在戶外卻突然要收發一個緊急的email.當人們遠離他們的辦公室或是家裡時, 可以利用廣域的GPRS網路來持續的使用網路. 然而一個GPRS頻道所提供的頻寬卻是非常的低. 除了GPRS網路, 3G網路也可以提供廣域的服務和更高的頻寬. 但是不幸的, 在發表本篇論文時, 市場上還沒有3G的產品.

在本篇論文中, 我們提出了一個方法可以增加GPRS使用者的檔案傳輸速率. 我們的方法是利用多條的GPRS頻道來平行下載檔案. 使用網路服務的使用者除了利用自己的GPRS頻道下載資料外, 同時間也利用其他鄰近的GPRS頻道來幫助下載. 當鄰近的GPRS頻道收到資料封包後, 這些鄰近的GPRS頻道會利用802.11b 無線網路來傳送收到的資料封包給要求網路服務的那一位使用者.

我們設計並實作出上述的方法. 且我們的系統並不需要GPRS業者的任何支援. 我們量測了此系統再真實世界的表現. 實驗結果顯示在同時有四個GPRS頻道平行下載情況中, 我們的系統可以達到約原本傳輸速率的2.7倍. 為了量測我們系統在更複雜的拓撲和移動的情形下之表現. 我們使用NCTUns2.0模擬器, 模擬並量測系統的表現.
Recently the Internet becomes more and more popular. Users may need Internet access everywhere. For example, one may need to browse a web page or want to send/receive emails outdoors. To remain connected to the Internet, people may use wide-area GPRS networks when they are away from their home and office networks. A GPRS channel, however, provides very little bandwidth. Excepting a GPRS network, a 3G network is another choice that provides much higher bandwidth. Unfortunately, a 3G network has not put to market yet.

In this paper, we propose a scheme to increase the file transfer throughput for a GPRS user. Our approach is to transfer a requested file over multiple GPRS channels in parallel. The requesting user uses one’s channel and those of one’s neighbors for the transfer. When receiving packets from their GPRS channels, these neighbors forward them to the requesting user through a mobile ad-hoc network (MANET) using IEEE 802.11 (b) WLAN interfaces.

We have designed and implemented our scheme. Our scheme can be deployed for a real-world GPRS network without any support from it. We have evaluated the performance of our scheme on a real-world GPRS network. Our experimental results show that our scheme achieves about 2.7X speedup over 4 GPRS channels. To further evaluate our scheme with a much complicated topology, we have simulated our scheme and evaluated the performance of it on network simulator NCTUns2.0.
1. Introduction………………………………………………………………………..1
2. Related Work………………………………………………………………………3
3. System Design and Implementation ….…………………………………………...7
3.1 System Architecture…………………………………………………………...7
3.2 System Implementation………………………………………………………..9
3.2.1 Trunk Daemon and Web Proxy Server………………………………...9
3.2.2 Mobile Node Daemon and Application………………………………13
4. Protocol Design…………………………………………………………..………15
4.1 Initialization Protocol…………………………………………………...……16
4.2 Data Transfer Protocol………………………………………………….……20
4.2.1 Improvement of Acknowledgement…………………………….……21
4.2.2 Fast Retransmission in our scheme…………………………………..22
4.2.3 Improved Fast Retransmission in our scheme………………….…….22
4.3 Ad-Hoc Routing Protocol………………………………………………..…...23
4.3.1 Mobility Issues……………………………………………………….23
4.4 Reset Protocol…………………………………………………………….….24
5. Experimental Settings and Results…………………………………………….…25
5.1 Experimental Settings………………………………………………………..26
5.2 Experimental Results…………………………………………………………29
5.2.1 Calibration Tests……………………………………………………...29
5.2.2 Evaluation Experiments……………………………………………...33
6. Simulation Settings and Results………………………………………………….39
6.1 Simulation Settings and Modifications………………………………………40
6.2 Simulation Results…….……………………………………………………...40
6.2.1 Calibration Tests for the GPRS package on NCTUns2.0…………….40
6.2.2 Evaluation Experiments with a Simple Wireless Physical Layer Module……………………………………………………………….44
6.2.2.1 TCP………………………………………………………………44
6.2.2.1.1 Single Hop Count……………………………………...…44
6.2.2.1.2 Multiple Hop Counts…………………………………..…52
6.2.2.2 UDP………………………………………………………………53
6.2.2.2.1 Single Hop Count………………………………………...53
6.2.2.2.2 Multiple Hop Counts……………………………………..60
6.2.3 Evaluation Experiments with an Advanced Wireless Physical Layer Module……………………………………………….………………61
6.2.3.1 TCP………………………………………………………………61
6.2.3.1.1 Single Hop Count………………………………………...62
6.2.3.1.2 Multiple Hop Counts……………………………………..63
6.2.3.2 UDP………………………………………………………………65
6.2.3.2.1 Single Hop Count………………………………………...65
6.2.3.2.2 Multiple Hop Counts……………………………………..66
6.3 Routing Experiments…………………………………………………………66
6.3.1 Basic Routing Experiments…………………………………………..66
6.3.2 Integrated Experiment………………………………………………..68
7. Discussions……………………………………………………………………….70
7.1 Market Potential……………………………………………………………...70
7.2 Billing Issues…………………………………………………………………71
8. Future Work………………………………………………………………………72
9. Conclusions………………………………………………………………………73
References……………………………………………………………………………74
Appendix…………………………………………………………………………….76
[1] Haiyun Luo, Ramachandran Ramjeey, Prasun Sinhaz, Li (Erran) Li, Songwu Lu, “UCAN: A Unified Cellular and Ad-Hoc Network Architecture,” ACM MOBICOM 2003, September 2003, San Diego, California, USA.

[2] Ying-Dar Lin and Yu-Ching Hsu, “Multihop Cellular: A New Architecture for Wireless Communications,” IEEE INFOCOM 2000, March 2000, Tel Aviv, Israel.

[3] S. De, O. Tonguz, H. Wu, and C. Qiao, “Integrated Cellular and Ad Hoc Relay (iCAR) Systems: Pushing the Performance Limits of Conventional Wireless Networks,” 35th Annual Hawaii International Conference on System Sciences (HICSS’02), Volume 9, Januar 2002, Hawaii, USA.

[4] X. Wu, S. Chan, and B. Mukherjee, “MADF: A Novel Approach to Add an Ad-hoc Overlay on a Fixed Cellular Infrastructure,” IEEE WCNC 2000, Volume 2, pp. 549-554, September 2000, Chicago, USA.

[5] Ansuya Negi, Suresh Singh, “Improvement in reliability of coverage using 2-hop relaying in cellular networks,” IEEE PIMRC 2003, Volume 3, pp. 2348-2352, September 2003, Beijing International. Convention Center, Beijing, China.

[6] Hung-Yun Hsieh and Raghupathy Sivakumar, “pTCP: An End-to-End Transport Layer Protocol for Striped Connections,” ICNP 2002: 24-33

[7] Casey Carter, and Robin Kravets, ”User Devices Cooperating to Support Resource Aggregation,” Fourth IEEE Workshop on Mobile Computing Systems and Applications p. 59

[8] Puneet Sharma, Sung-Ju Lee,_ Jack Brassil, and Kang G. Shiny Mobile & Media Systems Lab, Hewlett-Packard Laboratories, Palo Alto, ” Handheld Routers: Intelligent Bandwidth Aggregation for Mobile Collaborative Communities,” BROADNETS 2004: 537-547

[9] Pablo Rodriguez, Rajiv Chakravorty, Julian Chesterfield, Ian Pratt, Suman Banerjee, “MAR: A Commuter Router Infrastructure for the Mobile Internet,” ACM MOBISYS 2004, Boston. June 2004

[10] Maria Papadopouli and Henning Schulzrinne."Design and Implementation of a Peer-to-Peer Data Dissemination and Prefetching Tool for Mobile Users", First NY Metro Area Networking Workshop, March 12th, 2001, IBM TJ Watson Research Center, Hawthorne, New York.

[11] S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang, C.C. Chiou, and C.C. Lin, “The Design and Implementation of the NCTUns 1.0 Network Simulator”, Computer Networks, Vol. 42, Issue 2, pp. 175-197, June 2003.

[12] S.Y. Wang, C.C. Lin, Y.W. Hwang, K.C. Tao, and C.L. Chou, “A Practical Routing Protocol for Vehicle-Formed Mobile Ad Hoc Networks on the Roads,” IEEE ITSC 2005 (International Conference on Intelligent Transportation Systems), September 13-16 2005, Vienna, Austria
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top