跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/11 13:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊仲凱
研究生(外文):Zhong-Kai Yang
論文名稱:使用重疊球體正向模型以及階層搜尋光束構成進行腦電波訊號源定位
論文名稱(外文):EEG Source Estimation using Overlapping-Sphere Forward Model and Hierarchical-Search Beamforming
指導教授:陳永昇陳永昇引用關係
指導教授(外文):Yong-Sheng Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:50
中文關鍵詞:腦電波訊號源定位重疊球體正向模型階層搜尋光束構成
外文關鍵詞:EEGSource EstimationOverlapping-SphereForward ModelHierarchical-SearchBeamforming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:3
  腦,是人體當中最重要且複雜的器官,對於腦功能的探索,是目前最熱門的研究課題之一。腦電波儀是常被用來進行腦功能研究的工具之一,因為它具有相當高的取樣頻率以及低廉的價位。在本篇論文中,我們將會提出一個準確且快速的腦電波訊號源定位方法,包括了正向模型的計算(針對已知的訊號源計算腦電波),以及如何去解決反向問題(利用腦電波來進行訊號源定位)。
  在所提出的正向模型中,我們針對每個腦電波儀感應器找出適合的重疊球體,以增加正向模型的準確度。並且,重疊球體只需要使用多層球體結構即可很快速的計算出來,而不需要去計算相當耗時的邊界元素模型。基於所提出的正向模型,我們使用階層搜尋光束構成來解決反向問題。經由最大化腦電波的活動狀態和控制狀態的強度對比,可以大幅地增加訊號源定位結果的準確度。並且,在腦空間中搜尋訊號源時我們使用階層搜尋而非全域搜尋,亦能有效地降低解決反向問題的時間。
  根據假體實驗以及視覺刺激實驗結果,確認了我們所提出的方法之準確性以及便利性。我們所提出的訊號源定位法可以有效地被使用在無需磁振造影資料的情形,例如進行基礎腦科學的研究,或者腦機介面的開發。
Brain is the most important and complicated apparatus of human beings.
EEG has been widely applied in functional brain studies due to its high temporal resolution and low cost.
In this work, we focus on the development of an accurate and efficient EEG forward model as well as the inverse solution for neuronal source estimation from the EEG measurements.

Our forward model successfully gains its accuracy by fitting an overlapping sphere for each EEG sensor.
The computation of the overlapping sphere requires only the multi-shell geometry, instead of boundary element method, thus the proposed forward model is easy to compute.
Based on the proposed forward model, the beamforming technique is applied to calculate the distributed sources in the brain space.
We maximize the power contrast between active state and control state of EEG recorded data to improve the accuracy of inverse solution.
Hierarchical search in the solution space is applied to save the amount of computation by searching grid point level by level instead of searching the whole brain space.

According to our experiments using phantom data and visual-evoked potential data, the proposed forward model and inverse solution can efficiently and accurately estimate the source of brain activation.
A quick and reliable source localization technique for EEG is successfully developed which can be applied on applications when MRI is not available, such as fundamental brain research and brain-computer interface.
List of Figures v

List of Tables vii

1. Introduction 1
1.1 Background 2
1.2 Thesis scope 4
1.3 Organization of this thesis 5

2. Forward Model 7
2.1 Previous works 8
2.1.1 Single-shell model 8
2.1.2 Multi-shell model 9
2.1.3 Boundary element model 13
2.2 Proposed method 13
2.2.1 Background of overlapping spheres 13
2.2.2 Calculation of overlapping spheres 15
2.2.3 Calculation of inner_skull surface 18
2.2.4 Correction of overlapping spheres 19

3. Inverse Problem 21
3.1 Previous works 22
3.1.1 Fitting method 22
3.1.2 Scanning method 24
3.2 Proposed inverse solution 28
3.2.1 Maximum contrast beamforming 28
3.2.2 Hierarchical-search beamforming 29

4. Experiments 33
4.1 Phantom data 34
4.1.1 Comparison between forward models 34
4.1.2 Inverse accuracy verification 36
4.2 Real experiment 39

5. Conclusions 45

Bibliography 47
[1] P. Berg and M. Scherg. A fast method for forward computation of multiple-shell spherical head models. Electroencephalography and Clinical Neurophysiology, 90, 1994.
[2] D. A. Brody, F. H. Terry, and R. E. Ideker. Eccentric dipole in a spherical medium: Generalized expression for surface potentials. IEEE Transactions on Biomedical Engineering, 20:141–143, 1973.
[3] D. K. Cheng. Field and Wave Electromagnetics. Addison Wesley, 2 edition, 1989.
[4] Edwin K. P. Chong and Stanislaw H. Zak. An Introduction to Optimization. John Wiley & Sons, 2 edition, 2001.
[5] B. N. Cuffin and D. Cohen. Comparison of the magnetoencephalogram and electroencephalogram. Electroencephalography and Clinical Neurophysiology, 47:132–146, 1979.
[6] A. Delorme and S. Makeig. EEGLAB: An open source toolbox for analysis of signaltrial EEG dynamics. Journal of Neuroscience Methods, 134:9–21, 2004.
[7] J. J. Ermer, J. C. Mosher, S. Baillet, and R. M. Leahy. Rapidly recomputable EEG forward models for realistic head shapes. Physics in Medicine and Biology, 46:1265–1281, 2001.
[8] D. B. Geselowitz. On bioelectric potentials in an inhomogeneous volume conductor. Biophysical Journal, 7:1–11, 1967.
[9] S. Ghahramani. Fundamentals of Probability. Prentice Hall, 3 edition, 2000.
[10] M. Hamalainen and R. Hari. Brain Mapping. Brain Research Unit, Low Temperature Laboratory, Helsinki University of Technology, 2 edition, 2002.
[11] M. Hamalainen, R. Hari, J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Review of Modern Physics, 65:413–497, 1993.
[12] M. S. Hamalainen and J. Sarvas. Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Transactions on Biomedical Engineering, 36:165–171, 1989.
[13] M. X. Huang, J. C. Mosher, and R. M. Leahy. A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. Physics in Medicine and Biology, 44:423–440, 1999.
[14] C. Humphries, S. Enghoff, Tzyy-Ping Jung, Te-Won Lee, and T. Bell. EEGLAB, http://sccn.ucsd.edu/eeglab/. Institute for Neural Computation at the University of California San Diego, 2002.
[15] A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley & Sons, 2001.
[16] D. C. Lay. Linear Algebra and Its Applications. Addison Wesley, 2 edition, 1998.
[17] R. M. Leahy, J. C. Mosher, M. E. Spencer, M. X. Huang, and J. D. Lewine. A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalography and Clinical Neurophysiology, 107, 1998.
[18] H. Y. Liu, Y. S. Chen, L. F. Chen, and J. C. Hsieh. Statistical mapping of cortical activities using minimum-variance maximum-discrimination spatial filtering. In The Joint Meeting of the 5th International Conference on Bioelectromagnetism and the 5th International Symposium on Noninvasive Functional Source Imaging within the Human Brain and Heart, Minneapolis, Minnesota, USA, May 2005.
[19] N. Lynnerup. Cranial thickness in relation to age, sex and general body build in a danish forensic sample. Forensic Science International, 177:45–51, 2001.
[20] J. C. Mosher, R. M. Leahy, and P. S. Lewis. EEG and MEG: Forward solutions for inverse methods. IEEE Transactions on Biomedical Engineering, 46:245–259, 1999.
[21] R. D. Pascual-Marqui, C. M. Michel, and D. Lehmann. Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18:49–65, 1994.
[22] W. H. Press, S. A. Teukolsky,W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C. Cambridge University Press, 1989.
[23] S. E. Robison and J. Vrba. Functional neuroimaging by synthetic aperture magnetometry (SAM). Technical Report, CTF Systems Inc., Port Coquitlam, BC, Canada, 1998.
[24] Y. Salu, L. G. Cohen, D. Rose, S. Sato, C. Kufta, and M. Hallett. An improved method for localizing electric brain dipoles. IEEE Transactions on Biomedical Engineering, 37:699–705, 1994.
[25] Mingui Sun. An efficient algorithm for computing multishell spherical volume conductor models in EEG dipole source localization. IEEE Transactions on Biomedical Engineering, 44:1243–1252, 1997.
[26] P. C. Teo, G. Sapiro, and B. A. Wandell. Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Transactions on Medical Imaging, 16:852–863, 1997.
[27] B. D. Van Veen, W. V. Drongelen, M. Yuchtman, and Akifumi Suzuki. Localization of brain electrical actvity via linearly constrained minimum variance spatial filtering. IEEE Transactions on Biomedical Engineering, 44:867–880, 1997.
[28] J. Vrba and S. E. Robison. Differences between synthetic aperture magnetometry (SAM) and linear Beamformers. In Biomag 2000, 12th International Conference on Biomagnetism, Helsinki University of Technology, Espoo, Finland, 2000.
[29] Zhi Zhang. A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres. Physics in Medicine and Biology, 40, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top