中文部分:
〔1〕 葉金成,我國股票上市優良與不優良企業財務特性之研究,碩士論文,國立政治大學企業管理研究所,民國六十七年。
〔2〕 何太山,運用區別分析建立商業放款信用評分制度,碩士論文,國立政治大學企業管理研究所,民國六十六年。〔3〕 林建丞,「財務危機公司之預警偵測」,碩士論文,國立東海大學管理研究所,民國八十八年。〔4〕 李立行,「運用現金流量預測企業財務危機之研究--以上市公司紡織業為例」,碩士論文,淡江大學管科所,民國七十七年。〔5〕 陳肇榮,「運用財務比率預測企業財務危機之實證研究」,博士論文,國立政治大學財政研究所,民國七十二年。〔6〕 潘玉葉,「台灣股票上市公司財務危機預警分析」,博士論文,淡江大學管理科學研究所,民國七十九年。〔7〕 許瑞立,「台灣上電子公司財務預警模型」,碩士論文,義守大學管理科學研究所,民國八十九年。〔8〕 施淑萍,「財務危機預警模式與財務危機企業財務特性之研究」,碩士論文,東吳大學會計學研究所,民國八十九年。〔9〕 徐淑芳,「台灣上市公司財務危機預警-應用多變量CUSUM 時間序列分析」,碩士論文,國立東華大學企業管理研究所,民國八十七年。〔10〕 王凱仁,「建設公司財務危機動態預警模型之研究」,博士論文,國立交通大學土木工程學系,民國九十二年。〔11〕 賴麗月,「企業失敗的預測-比例危機模型應用」,碩士論文,東吳大學會計研究所,民國八十二年。〔12〕 郭志安,「以Cox 模型建立財務危機預警模式」,碩士論文,逢甲大學統計與精算研究所,民國八十五年。〔13〕 鄧志豪,「以分類樣本偵測地雷股-新財務危機預警模型」,碩士論文,國立政治大學金融學系,民國八十八年。〔14〕 楊浚泓,「考慮財務操作與合併報表後之財務危機預警模式」,碩士論文,國立中央大學財務管理研究所,民國九十年。〔15〕 施思佳,「電子業財務危機預警模式之研究--以現金流量觀點」,碩士論文,國立台北大學企業管理學系研究所,民國九十一年。〔16〕 鄭國瑞,「多項財務危機預警模式之探討」,碩士論文,國立高雄第一科技大學金融營運所,民國九十年。英文部分:
〔1〕 Aggarwal, C. C. and Yu, P. S. , "Outlier Detection for High Dimensional Data," Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 37-46, 2001.
〔2〕 Altman, E., "Financial Ratios, Discriminant Analysis and the Prediction Corporate Bankruptcy," Journal of Finance, vol. 23, pp. 589-609, 1968.
〔3〕 Angiulli, F. and Pizzuti, C., "Fast Outlier Detection in High Dimensional Spaces", Proceedings of European Conference on Principles of Data Mining and Knowledge Discovery, pp. 15-26, 2002.
〔4〕 Arning, A., Agrawal, R., and Raghavan, P., "A Linear Method for Deviation Detection in Large Databases," Proceedings of International Conference on Knowledge Discovery and Data Mining, pp. 164-169, 1996.
〔5〕 Beaver, W., "Financial Ratios as Predictors of Failure," Journal of Accounting Research, pp. 71-111, 1966.
〔6〕 Beaver, W., "Alternative Accounting Measures as Predictors of Failure", Accounting Review, January, pp. 113-122, 1968.
〔7〕 Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J., "OPTICS-OF: Identifying Local Outliers," Proceedings of the European Conference in Principles and Practice of Knowledge Discovery in Databases, pp. 262-270, 1999.
〔8〕 Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J., "LOF: Identifying Density-Based Local Outliers," Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 93-104, 2000.
〔9〕 Deakin, E., "Distributions of Financial Accounting Ratios: Some Empirical Evidence", Journal of The Accounting Review, vol. 51, pp. 90-96, 1976.
〔10〕 Ester, M., Kriegel, H. P., Sander, J., and Xu, X., "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise," Proceedings of the International Conference on Knowledge Discovery in Databases and Data Mining, pp. 226-231, 1996.
〔11〕 Fayyad, U., Shapiro, G. P., and Smyth, P., "Knowledge Discovery and Data Mining: Towards a Unifying Framework," Proceedings of International Conference on Knowledge Discovery and Data Mining, pp. 82-88. 1996.
〔12〕 Foster, B. P., Ward, T. J., and Woodroof, J., "An Analysis of the Usefulness of Debt Defaultsand Going Concern Opinions in Bankruptcy Risk Assessment," Journal of Accounting Auditing and Finance, pp. 351-371, 1998.
〔13〕 Friedman, J., "Exploratory Projection Pursuit," Journal of American Statistical Assocication, vol. 82, pp. 249-266, 1987.
〔14〕 Gavrilov, M., Anguelov, D., Indyk, P., and Motwani, R., "Mining The Stock Market: Which Measure Is Best ?," Proceedings of International Conference on Knowledge Discovery and Data Mining, pp. 487-496, 2000.
〔15〕 Gilson, S. C., "Management Turnover and Financial Distress," Journal of Financial Economics, vol. 25, pp. 241-262, 1989.
〔16〕 Guha, S., Rastogi, R., and Shim, K., "ROCK: A Robust Clustering Algorithm for Categorical Attributes," Proceedings of International Conference on Data Engineering, pp. 512-521, 1999.
〔17〕 Hawkins, D. M., "Identification of Outliers," Chapman and Hall, 1980.
〔18〕 Inselberg, A. and Dimsdale B., "Parallel Coordinates: A Tool for Visualizing Multidimensional Geometry," Proceedings of Conference on Visualization, pp. 361-375, 1990.
〔19〕 Kira, K. and Rendell, L., "A Practical Approach to Feature Selection," Proceedings of International Conference on Machine Learning, pp. 249-256, 1992.
〔20〕 Knorr, E. M. and Ng, R. T., "Algorithms for Mining Distance-based Outliers in Large Data Sets," Proceedings of International Conference on Very Large Data Bases, pp. 392-403, 1998.
〔21〕 Knorr, E. M. and Ng, R. T., "Finding Intensional Knowledge of Distance-based Outliers," Proceedings of International Conference on Very Large Data Bases, pp. 211-222, 1999.
〔22〕 Koh, H. and Tan, S., "A Neural Network Approach to the Prediction of Going Concern Status," Journal of Accounting and Business Research, vol. 29, pp. 211-216, 1999.
〔23〕 Kohonen, T., "Self-Organizing Maps," Springer Series in Information Sciences 3rd, vol. 30, 2001.
〔24〕 Ling, A. H., "A Five--State Financial Distress Prediction Model", Journal of Accounting Research, vol.25, No.1, pp. 127-138, 1987.
〔25〕 Martin, D., "Early Warning of Banking Failure," Journal of Banking and Finance, vol. 27, pp. 249-276, 1977.
〔26〕 Meisel, W. S., "Computer-Oriented Approaches to Pattern Recognition," Academic Press, 1972.
〔27〕 Moon, B., Jagadish, H. V., Faloutsos C., and Saltz J.H., "Analysis of the Clustering Properties of the Hilbert Space-Filling Curve," IEEE Transactions on Knowledge and Data Engineering, vol. 13, pp. 124-141, 2001.
〔28〕 Nanopoulos, A., Theodoridis Y., and Manolopoulos Y., "C2P: Clustering based on Closest Pairs," Proceedings of International Conference on Very Large Data Bases, pp. 331-340, 2001.
〔29〕 Odom, M. D. and Sharda, R., "A neural network model for bankruptcy prediction," Proceedings of International Joint Conference on Neural Networks, vol. 2, pp. 163-168, 1990.
〔30〕 Ohlson, J. A., "Financial Ratios and the Probabilistic Prediction of Bankruptcy," Journal of Accounting Research, vol. 18, pp. 109-131, 1980.
〔31〕 Ramaswamy, S., Rastogi, R., and Shim, K., "Efficient Algorithms for Mining Outliers from Large Data Sets," Proceedings of ACM SIDMOD International Conference on Management of Data, pp. 427-438, 2000.
〔32〕 Seo, J. and Shneiderman, B., "A Rank-by-Feature Framework for Unsupervised Multidimensional Data Exploration Using Low Dimensional Projections," Proceedings of IEEE Symposium on Information Visualization, pp. 65-72, 2004.
〔33〕 Theodossiou, P., "Predicting Shifts in the Mean of A Multivariate Time Series Process: An Application in Predicting Business Failure," Journal of the American Statistical Association, vol. 88, pp. 441-449, 1993.
〔34〕 Wruck, K. H., "Financial Distress, Reorganization and Organization Efficiency," Journal of Financial Economics, vol. 27, pp. 419-444, 1990.
〔35〕 Yamanishi, K. and Takeuchi, J., "Discovering outlier filtering rules from unlabeled data: combining a supervised learner with an unsupervised learner," Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 389-394, 2001.
〔36〕 Yu, D., Sheikholeslami, G., and Zhang, A., "FindOut: Finding Out Outliers in Large Datasets," Journal of Knowledge and Information Systems, vol. 4, pp. 387-412, 2002.
〔37〕 Zmijewski, M. E., "Methodological Issues Related to the Estimation of Financial Distress Prediction Models," Journal of Accounting Research, vol. 22, pp. 59-82, 1984.