跳到主要內容

臺灣博碩士論文加值系統

(44.200.145.223) 您好!臺灣時間:2023/05/29 01:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳旻政
研究生(外文):Chen, Min-Cheng
論文名稱:超薄氧化層絕緣層上覆矽元件中軟式崩潰所引發之可靠性議題的探討
論文名稱(外文):Investigation of soft breakdown induced reliability issues in ultra-thin oxide SOI devices
指導教授:汪大暉
指導教授(外文):Wang Tahui
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:中文
論文頁數:110
中文關鍵詞:SOIsoft breakdownreliabilityfolating bodyultra-thin oxide
外文關鍵詞:絕緣層上覆矽軟式崩潰可靠性浮動基底極超薄氧化層
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
當積體電路製程推進到奈米(sub-100nm)元件世代,絕緣層上覆矽技術的使用將是可行性的替代方案之一。當元件尺寸縮小到100奈米時,閘極介電層的等效氧化層厚度必須薄於20埃以下。然而,在如此薄氧化層的絕緣層上覆矽元件中,軟式崩潰所引發之可靠性問題將是異常重要。

本篇論文將針對超薄氧化層絕緣層上覆矽金氧半場效電晶體中軟式崩潰所引發之可靠性議題作一系列的探討。首先,吾人探討超薄閘極氧化層中直接穿隧區域的電荷傳輸機制。主要的閘極穿隧漏電流可以分成源/汲極穿隧電流和基底極穿隧電流。在此吾人利用一套量子化電荷傳輸機制來解釋源/汲極電流和用古典的電荷傳輸機制來解釋基底極電流。為了精準的模擬穿隧電流,吾人藉由解波松和薛丁格聯立方程式來計算氧化層電場。在超薄氧化層絕緣層上覆矽金氧半場效電晶體中,由於浮動基底極的原因,這些穿隧漏電流將對可靠性造成一些新奇的影響。

接下來,在浮動基底極絕緣層上覆矽元件中,吾人知道大量的基底漏電流所造成的基底電位的調變和所導致不可避免的磁滯效應已被廣泛的討論。由於氧化層崩潰將增加基底極的穿隧漏電流,所以在浮動基底極的超薄閘極氧化層絕緣層上覆矽元件中,崩潰位置對臨界電壓磁滯現象的影響將在這部分探討。吾人將發表兩種在關閉狀態的金氧半電晶體中氧化層崩潰增強磁滯現象的模型。吾人所提供的基底充電機制和實驗結果相符。在浮動基底結構下的超薄閘極氧化層部份空乏絕緣層上覆矽金氧半場效電晶體中,軟式崩潰增強的磁滯現象將成為一種嚴重的可靠性議題。

再者,吾人發現在浮動基底絕緣層上覆矽金氧半場效電晶體中通道軟式崩潰導致一種新的低頻汲極電流雜訊退化現象。這種額外的雜訊來源來自於通道軟式崩潰導致大量基底極的價帶電子穿隧電流產生微量的白雜訊放大所致。在超薄閘極氧化層類比絕緣層上覆矽元件中,即使在操作電壓小於一伏特,通道軟式崩潰增加額外的雜訊仍會發生並將成為一個重要的可靠性問題。

最後,直接穿隧效應也會對超薄氧化層的崩潰及元件之毀壞產生影響。一般來說,元件的毀壞與否是由氧化層崩潰所造成破壞程度所決定,代表破壞程度較低的氧化層漏電流對實際電路應用而言,並不會造成任何操作上的影響。吾人在p型超薄氧化層絕緣層上覆矽電晶體中,針對浮動基底極對氧化層崩潰的破壞程度作完整之研究。在p型超薄氧化層元件中,吾人發現了正偏壓基底極操作模式下所產生的加速崩潰破壞。當氧化層初崩潰時,高能量的通道電洞在正偏基底極時產生較大的電動加壓電流,進而使得氧化層產生更大的破壞。藉由熱載子光激發實驗及熱電洞在通道能階上的分佈分析,吾人成功地解釋出此基底極偏壓相依性。吾人並預測此種崩潰破壞將對浮動基底超薄閘極氧化層絕緣層上覆矽p型金氧半場效電晶體產生新的可靠性議題。
The silicon-on-insulator (SOI) technology is a promising candidate of IC manufacture required for sub-100nm CMOS devices. As device size shrinks below 100nm, the effective oxide thickness of gate dielectric must scale below 20Å. While, a great reliability concern induced by soft breakdown (SBD) in such thin oxides SOI devices is being aroused.
The objective of this dissertation is to investigate soft breakdown induced reliability issues in such ultra-thin oxide SOI MOSFETs. First of all, the charge transport mechanisms of oxide in direct tunneling regime is investigated. The gate tunneling leakage current can be separated by source/drain tunneling current and substrate tunneling current. In this work, a quantum charge transport mechanism is proposed to explain the source/drain current. And, a classical charge transport mechanism is proposed to explain the substrate current. To calculate the tunneling current accurately, the oxide electric field is simulated by means of solving the combined Poisson and Schrodinger equations. These tunneling leakage currents may bring about some reliability concerns in floating body ultra-thin oxide SOI MOSFETS.
Further, substrate leakage current has been known to cause substrate bias variation and induce unavoidable hysteresis effects in floating body SOI devices. Since oxide breakdown can enhance substrate tunneling leakage current, the impact of breakdown location on threshold voltage hysteresis in ultra-thin oxide SOI devices is investigated in this part. Two breakdown enhanced hysteresis modes in off-state CMOS are identified. The proposed body charging mechanisms are verified by our measurement results. The SBD enhanced hysteresis effect would be a serious reliability subject in ultra-thin oxide MOSFETs with floating body configuration.
Moreover, a new low frequency drain current noise source in floating body SOI nMOSFETs caused by channel soft breakdown is studied. The excess noise originates from channel soft breakdown enhanced valence band electron tunneling and the amplification by the small white noise of the substrate current. The c-SBD enhanced excess noise may occur even with supply voltage less than 1.0V and would be an important reliability problem in analog applications.
Finally, a large direct tunneling current can decrease oxide time-to-breakdown and limit oxide further scaling. Actually in most circuits, the failure criterion is determined by the hardness of oxide breakdown. In this part, floating body enhanced breakdown progression in ultra-thin oxide SOI pMOS is proposed. The enhanced progression is attributed to the increase of hole tunneling current resulting from breakdown induced channel carrier heating. The substrate bias dependence of post-breakdown hole tunneling current is confirmed through the calculation of channel hole distribution in sub-bands. This observed phenomenon is significant to ultra-thin gate oxide reliability in floating body SOI pMOSFETs.
Chinese Abstract i
English Abstract iii
Acknowledgements v
Contents vi
Figure Captions ix
Table Captions xiv

Chapter 1 Introduction 1

Chapter 2 Simulation of Charge Transport in Ultra-Thin Oxide MOSFETs 5
2.1 Introduction 5
2.2 Surface Quantization and Gate Capacitance Modeling 6
2.3.1 Simulation Model for Potential Distribution 6
2.3.2 Self Consistent Solution of Schrodinger's and Poisson's Equations 8
2.3.3 Gate Capacitance Modeling 8
2.3 Source/Drain Tunneling Current Modeling 17
2.3.1 Transport of Conduction Band Electrons 17
2.3.2 Simulated and measured results 20
2.4 Substrate Tunneling Current Modeling 25
2.4.1 Transport of Valence Band Electrons 25
2.4.2 Simulated and Measured Result 26
2.5 Summary 27


Chapter 3 Soft Breakdown Enhanced Hysteresis Effects in Ultra-Thin Oxide SOI MOSFETs 31
3.1 Introduction 31
3.2 Device Structure and Characterization 32
3.3 Modes of SBD Enhanced Hysteresis 38
3.4 Results and Discussion 41
3.5 Summary 42

Chapter 4 Soft Breakdown Enhanced Excess Low- Frequency Noise in Ultra-Thin Oxide SOI n-MOSFETs 50
4.1 Introduction 50
4.2 Excess Low-Frequency Noise Model in SOI MOSFETs 51
4.3 Kink Effect Induced Excess Low-Frequency Noise 60
4.4 Channel Soft Breakdown Enhanced Excess Low- Frequency Noise 66
4.5 Summary 68

Chapter 5 Floating Body Accelerated Oxide Breakdown Progression in Ultra-Thin Oxide SOI p-MOSFETs 73
5.1 Introduction 73
5.2 Devices and Experiment 74
5.3 Result and Discussion 76
5.3.1 A Shorter tfail in SOI pMOSFETs 76
5.3.2 Mechanism of Enhanced BD Progression in SOI 76
5.3.3 BD Caused Carrier Heating 77

5.4 The Impact of Gate Stress Bias 88
5.4 Summary 88

Chapter 6 Conclusions 93
References 95
Vita 108
Publication Lists 109
Chapter 1
[1.1] J. H. Stathis and D. J. DiMaria, “Reliability projection for ultra-thin oxides at low voltage,” in in 1998 IEDM Techn. Digest, p. 167, 1998 .
[1.2] J. P. Colinge, ”Silicon-on-Insulator Technology: Materials to VLSI”, in Kluwer Academic Publishers, Dordrecht, Netherlands, 1991.
[1.3] G. G. Shahidi, “SOI technology fot the GHz era”, in IBM journal of research & Development, vol. 46, no. 2, p.121 2002.
[1.4] B. P. Linder, J. H. Stathis, D. J. Frank, S. Lombardo, A. Vayshenker, “Growth and scaling of oxide conduction after breakdown,” in 2003 IRPS Proc., p. 402, 2003.
[1.5] M. Canada, C. Akrout, D. Cawthron, J. Corr, S. Geissler, R. Houle, P. Kartschoke, D. Kramer, P. McCormick, N. Rohrer, G. Salem, and L. Warriner, “A 580 MHz RISC Microprocessor in SOI”, in 1999 ISSCC Dig. Tech. Papers, p.430 1999.
[1.6] D. Eggert, P. Huebler, A. Huerrich, H. Kueck, W. Budde, and M. Vorwerk, “A SOI-RF-CMOS technology on high resistivity SIMOX substrates for microwave applications to 5 GHz”, in IEEE Transactions Electron Devices, vol 44, no. 11, p.1981 1997.
[1.7] Wei Jin, Philip C. H. Chan, Samuel K. H. Fung and Ping K. Ko, “Shot-Noise-Induced Excess Low-Frequency Noise in Floating-Body Partially Depleted SOI MOSFET’s”, in IEEE Transaction on Electron Devices, vol. 46, no. 6, p. 1180 1999.
[1.8] Ying-Che Tseng, W.M. Huang, E. Spears, D. Spooner, D. Ngo, J.M. Ford, and J.C.S. Woo, “Phase noise characteristics associated with low-frequency noise in submicron SOI MOSFET feedback oscillator for RF IC’s”, in IEEE Electron Device Letters, vol. 20, no. 1, p.54 1999.
[1.9] Tahui Wang, C.W. Tsai, M.C. Chen, C.T. Chan, H.K. Chiang, S. Huang Lu, H.C. Hu, T.F. Chen, C.K. Yang, M.T. Lee, D.Y. Wu, J.K. Chen, S.C. Chien and S.W. Sun, “Negative Substrate Bias Enhanced Breakdown Hardness in Ultra-Thin Oxide pMOSFETs “ in 2003 IRPS Proc., p.437, 2003.
[1.10] C. W. Tsai, M. C. Chen and T. Wang, “Substrate Bias Dependence of Breakdown Progression in Ultra-Thin Oxide pMOSFETs,” in IEEE Electron Device Letters, vol 24, no. 4, p.269 2003.

Chapter 2
[2.1] Nian Yang, W. Kirklen Henson, John R. Hauser, Jimmite and J. Wortman, “Modeling Study of Ultrathin Gate Oxides Using Direct Tunneling Current and Capacitance-Voltage Measurements in MOS Devices," in IEEE Transactions Electron Devices, vol 46, no. 7, 1464-1471 1999.
[2.2] S.-H. Lo, D. A. Buchanan and Y. Taur, "Modeling and Characterization of Quantization, Polysilicon Depletion, and Direct Tunneling Effects in MOSFETs with Ultrathin Oxides," in IBM journal of research & Development, vol 43, no. 3, 327-337 1999.
[2.3] Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S.-H. Lo, G. A. Sai-Halasz, R. G. Viswanathan, H.-J. C. Wann, S. J. Wind, and H.-S. Wong, "CMOS Scaling into the Nanometer Regime," in Proc. IEEE vol 85, no. 4, 486-504 1997.
[2.4] G. Baccarani and M. R. Wordeman, 'Transconductance Degradation in Thin-Oxide MOSFET's," in IEEE Transactions Electron Devices, vol 30, no. 10, 1295-1304 1983.
[2.5] C. Y. Wong, J. Y.-C. Sun, Y. Taur, C. S. Oh, R. Angelucci, and B. Bavari, "Doping of n+ and p+ Polysilicon in a Dual-Gate Process," in 1988 IEDM Techn. Digest, 238-241 1988.
[2.6] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito, and Hiroshi lwai, "Tunneling Gate Oxide Approach to Ultra-High Current Drive in Small-Geometry MOSFETs," in 1994 IEDM Techn. Digest, 593-596 1994.
[2.7] Y. Ohkura, "Quantum Effects in Si n-MOS Inversion Layer at High Substrate Concentration," in Solid-State Electron., vol 33, no. 12, 1581-1585 1990.
[2.8] F. Stern, "Self-Consistent Results for n-type Si Inversion Layers," in Phys. Rev. B vol 5, no. 12, 4891-4899 1972.
[2.9] J. Sune, P. Olivo, and B. Ricco, "Quantum-Mechanical Modeling of Accumulation Layers in MOS Structure," in IEEE Transactions Electron Devices, vol 39, 1732-1739 1992.
[2.10] R. E. Collin, Field Theory of Guided Waves, 2nd Ed., IEEE Press, New York, 1991.
[2.11] Sorab K. Ghandhi, The Theory and Practice of Microelectronics, John Wiley and Sons, Inc., New York, 1968.
[2.12] V. C. Aguilera-Navarro, G. A. Estevez, and Allyn Kostecki, "A note on the Fermi-Dirac integral function," in Journal of Applied Physics, vol 63, no. 8, 2848-2850 1988.
[2.13] M. J. McNutt and C. T. Sah, "Determination of the MOS Oxide Capacitance," in Journal of Applied Physics, vol 46, no. 9, 3909-3913 1975
[2.14] K. Lehovec and S.-T. Lin, "Analysis of C-V Data in the Accumulation Regime of MIS Structures," in Solid-State Electron., vol 19, 993-996 1976.
[2.15] B. Ricco, P. Olivo, T. N. Nguyen, T.-S. Kuan, and G. Ferriani, "Oxide-Thickness Determination in Thin-Insulator MOS Structures," in IEEE Transactions Electron Devices, vol 35, no. 4, 432-438 1988.
[2.16] R. Rios and N. D. Arora, "Determination of Ultra-Thin Gate Oxide Thicknesses for CMOS Structures Using Quantum Effects," in 1994 IEDM Techn. Digest, pp. 613-616 1994.
[2.17] C. B. Duke, "Tunneling Phenomena in Solids," edited by E. Bustein and D. Lundquist, Plenum, New York, ch.4, 1964.
[2.18] S. M. Sze, "Physics of Semiconductor Devices 2nd Edition," John Wiley & Sons, 1981.
[2.19] R. Tsu and L. Esaki, "Tunneling in a Finite Superlattice." in Applied Physics Letters, vol 22, 562-564, 1973.
[2.20] P. Olivo, B. Ricco and E. Sangoirgi, "High-Field-Induced Voltage-Dependent Oxide Charge," in Applied Physics Letters, vol 48, 1135-1137 1986.
[2.21] Z. A. Weinberg, "On Tunneling in Metal-Oxide Silicon Structures, " in Journal of Applied Physics, vol 53, no. 7, 5052-5056 1982.
[2.22] J. Maserjian, "Tunneling in Thin MOS Structures," in J. Vac. Sci. Technol. II, no. 6, 996-1003 1974.
[2.23] J. G. Simmons, "Generalized Formula for the Electric Tunneling Effect Between Similar Electrodes Separated by a Thin Insulating Film," in Journal of Applied Physics, vol 34, no. 6, 1793-1803 1963.
[2.24] F. Rana, S. Tiwari, and D. A. Buchanan, "Self-Consistent Modeling of Accumulation Layers and Tunneling Currents Through Very Thin Oxides," in Applied Physics Letters, vol 69, no. 8, 1104-1106 1996.
[2.25] S.-H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, "Quantum-Mechanical Modeling of Electron Tunneling Current from the Inversion Layer of Ultra-Thin-Oxide nMOSFET's," in IEEE Electron Device Letters, vol 18, no. 5, 209-211 1997.

Chapter 3
[3.1] T. Ouisse, G. Ghibaudo, J. Brini, S. Cristoloveanu and G. Borel, “Investigation of floating body effects in silicon-on-insulator metal-oxide-semiconductor field-effect transistors”, in Journal of Applied Physics, vol. 70, no.7, p. 3912 1991.
[3.2] A. Wei, M. J. Sherony and D.A. Antoniadis, “Effect of floating-body charge on SOI MOSFET design”, in IEEE Transaction on Electron Devices, vol. 45, no. 2, p. 430 1998.
[3.3] J. Pretet, N. Subba, Dimitris Ioannou, Sorin Cristoloveanu, W. Maszara and C. Raynaud, “Reduced Floating Body Effects in Narrow Channel SOI MOSFETs”, in IEEE Electron Device Letters, vol. 23, no. 1, p.300 2002.
[3.4] T. Poiroux, O. Faynot, C. Tabone, H. Tigelaar, H. Mogul, N. Bresson and S. Cristoloveanu, “Emerging Floating-Body Effects in Advanced Partially-Depleted SOI Devices”, in 2002 IEEE International SOI Conference, p.99 2002.
[3.5] Alain Boudou, Brian S. Doyle, “Hysteresis I-V Effects in Short-Channel Silicon MOSFET’s”, in IEEE Electron Device Letters, vol. 8, no. 7, p.300 1987.
[3.6] C.-E. Daniel Chen, Mishel Matloubian, R. Sundaresan, “Single-Transistor Latch in SOI MOSFET’s” , in IEEE Electron Device Letters, vol. 9, no. 12, p.636 1988.
[3.7] S.K.H. Fung, N. Zamdmer, P.J. Oldiges, J. Sleight, A. Mocuta, M. Sherony, S-H. Lo, R. Joshi, C.T. Chuang, I. Yang, S. Crowder, T.C. Chen, F. Assaderaghi, and G. Shahidi, “Controlling floating-body effects for 0.13 �慆 and 0.1 �慆 SOI CMOS”, in 2000 IEDM Techn. Digest, p.231 2001.
[3.8] Ruchir Puri, C.T. Chang, Mark B. Ketchen, Mario M. Pelella, and Michael G. Rosenfield, “On the Temperature Dependence of Hysteresis Effect in Floating-Body Partially Depleted SOI CMOS Circuits”, in IEEE Journal of Solid-State Circuits, vol. 36, no. 2, p.290 2001.
[3.9] Eli Harari, “Dielectric breakdown in electrically stressed thin films of thermal SiO2”, in Journal of Applied Physics, vol. 49, no.4, p. 2478 1978.
[3.10] I.C. Chen, S. Holland, K.K. Young, C. Chang and C. Hu “Substrate hole current and oxide breakdown”, in Applied Physics Letters, vol. 49, no. 11, p. 669 1986.
[3.11] M. Houssa, T. Nigam, P.W. Mertens and M.M. Heyns, “Model for the current-voltage characteristics of ultrathin gate oxides after soft breakdown”, in Journal of Applied Physics, vol. 84, no. 8, p. 4351 1998.
[3.12] E. Miranda, J. Sune, R. Rodriguez, M. Nafria and X. Aymerich, “Soft breakdown fluctuation events in ultrathin SiO2 layers”, in Applied Physics Letters, vol. 73, no. 4, p. 490 1998.
[3.13] B.E. Weir, P.L. Silverman, D. Monroe, K.S. Krisch, M.A. Alam, G.B. Alers, T.W. Sorsch, G.L. Timp, F. Baumann, C.T. Liu, Y. Ma, and D. Hwang, “Ultra-Thin Gate Dielectrics: They Break Down, But Do They Fail? ”, in 1997 IEDM Techn. Digest, p. 73 1997.
[3.14] Felice Crupi, Giuseppe Iannaccone, Isodiana Crupi, Robin Degraeve, Guido Groeseneken, and Herman E. Mase, “Characterization of Soft Breakdown in Thin Oxide NMOSFETs Based on the Analysis of the Substrate Current”, in IEEE Transaction on Electron Devices, vol. 48, no. 6, p. 1109 2001.
[3.15] T.Y. Chan, J. Chen, P.K. Ko, and C. Hu, “Impact of gate-induced drain leakage on device scaling”, in 1987 IEDM Tech. Digest, p.718 1987.
[3.16] Robin Degraeve, Ben Kaczer, An De Keersgieter, and Guido Groeseneken, “Relation between breakdown mode and breakdown location in short channel NMOSFETs and its impact on reliability specifications”, in 2001 IRPS Proc., p.360 2001.
[3.17] J.H. Stathis, “Percolation models for gate oxide breakdown”, in Journal of Applied Physics, vol. 86, no. 10, p. 5757 1999.
[3.18] Enrique Miranda and Jordi Sune, “Mesoscopic approach to the soft breakdown failure mode in ultrathin SiO2 films”, in Applied Physics Letters, vol. 78, no. 2, p. 225 2001.
[3.19] E. Wu, E. Nowak, J. Aitken, W. Abadeer, L. K. Han, and S. Lo, “ Structural Dependence of Dielectric Breakdown in Ultra-Thin Gate Oxides and Its Relationship to Soft Breakdown Modes and Device Failure”, in 1998 IEDM Techn. Digest, p. 187 1998.
[3.20] M.C. Chen, C.W. Tsai, S.H. Gu, Tahui Wang, S. Huang Lu, S.W. Lin, G.S. Yang, J.K. Chen, S.C. Chien, Y.T. Loh, and F.T. Liu, “Soft Breakdown Enhanced Hysteresis Effects in Ultra-Thin Oxide SOI nMOSFETs”, in 2002 IRPS Proc., p.404 2002.

Chapter 4
[4.1] T. Ouisse, G. Ghibaudo, J. Brini, S. Cristoloveanu and G. Borel, “Investigation of floating body effects in silicon-on-insulator metal-oxide-semiconductor field-effect transistors”, in Journal of Applied Physics, vol. 70, no.7, p. 3912 1991.
[4.2] A. Wei, M. J. Sherony and D.A. Antoniadis, “Effect of floating-body charge on SOI MOSFET design”, in IEEE Transaction on Electron Devices, vol. 45, no. 2, p. 430 1998.
[4.3] J. Pretet, N. Subba, Dimitris Ioannou, Sorin Cristoloveanu, W. Maszara and C. Raynaud, “Reduced Floating Body Effects in Narrow Channel SOI MOSFETs”, in IEEE Electron Device Letters, vol. 23, no. 1, p.300 2002.
[4.4] T. Poiroux, O. Faynot, C. Tabone, H. Tigelaar, H. Mogul, N. Bresson and S. Cristoloveanu, “Emerging Floating-Body Effects in Advanced Partially-Depleted SOI Devices”, in 2002 IEEE International SOI Conference, p.99 2002.
[4.5] Ying-Che Tseng, W.M. Huang, E. Spears, D. Spooner, D. Ngo, J.M. Ford, and J.C.S. Woo, “Phase noise characteristics associated with low-frequency noise in submicron SOI MOSFET feedback oscillator for RF IC’s”, in IEEE Electron Device Letters, vol. 20, no. 1, p.54 1999.
[4.6] Wei Jin, Philip C. H. Chan, Samuel K. H. Fung and Ping K. Ko, “Shot-Noise-Induced Excess Low-Frequency Noise in Floating-Body Partially Depleted SOI MOSFET’s”, in IEEE Transaction on Electron Devices, vol. 46, no. 6, p. 1180 1999.
[4.7] Glenn O. Workman and Jerry G. Fossum, “Physical Noise Modeling of SOI MOSFET’s with Analysis of the Lorentzian Component in the Low-Frequency Noise Spectrum”, in IEEE Transaction on Electron Devices, vol. 47, no. 6, p. 1192 2000.
[4.8] A. Mercha, J. M. Rafi, E. Simoen, E. Augendre and C. Claeys, “”Linear Kink Effect: Induced by Electron Valence Band Tunneling in Ultrathin Gate Oxide Bulk and SOI MOSFETs”, in IEEE Transaction on Electron Devices, vol. 50, no. 7, p. 1675 2003.
[4.9] V. Dessard, B. Iniguez, S. Adriaensen and D. Flandre, “SOI n-MOSFET low-frequency noise measurements and modeling from room temperature up to 250°C”, in IEEE Transaction on Electron Devices, vol. 49, no. 7, p. 1289 2002.
[4.10] A. Mercha, E. Simoen, H. van Meer and C. Claeys, “Low-Frequency Noise Overshoot in Ultrathin Gate Oxide Silicon-on-Insulator Metal-Oxide-Semiconductor Field-Effect Transistors”, in Applied Physics Letters, vol. 82, no. 11, p. 1790 2003.
[4.11] M.C. Chen, C.W. Tsai, S.H. Gu, Tahui Wang, S. Huang Lu, S.W. Lin, G.S. Yang, J.K. Chen, S.C. Chien, Y.T. Loh, and F.T. Liu, “Soft Breakdown Enhanced Hysteresis Effects in Ultra-Thin Oxide SOI nMOSFETs”, in 2002 IRPS Proc., p.404 2002.
[4.12] A. L. McWhorter, “1/f noise and germanium surface properties”, in Semiconductor Surface Physics, p. 207 1957.
[4.13] F. N. Hooge, “1/f noise”, in Physica, vol. 83B, p. 14 1976.
[4.14] K. K. Hung, P. K. Ko, C. Hu, and Y. C. Chen, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors”, in IEEE Transaction on Electron Devices, vol. 37, no.5, p. 654 1990.
[4.15] J. Jomaah, G. Ghibaudo, and F. Balestra, “Low frequency noise sources in fully and partially depleted SOI MOSFET’s from room to liquid helium temperatures”, in 1996 Electrochem. Soc. Proc., vol. 3, p. 248 1996.
[4.16] R. P. Jindal, “Noise associated with substrate current in fine-line NMOS field-effect transistors”, in IEEE Transaction on Electron Devices, vol. 32, no.6, p. 1047 1985.
[4.17] Eli Harari, “Dielectric breakdown in electrically stressed thin films of thermal SiO2”, in Journal of Applied Physics, vol. 49, no.4, p. 2478 1978.
[4.18] I.C. Chen, S. Holland, K.K. Young, C. Chang and C. Hu “Substrate hole current and oxide breakdown”, in Applied Physics Letters, vol. 49, no. 11, p. 669 1986.
[4.19] M. Houssa, T. Nigam, P.W. Mertens and M.M. Heyns, “Model for the current-voltage characteristics of ultrathin gate oxides after soft breakdown”, in Journal of Applied Physics, vol. 84, no. 8, p. 4351 1998.
[4.20] E. Miranda, J. Sune, R. Rodriguez, M. Nafria and X. Aymerich, “Soft breakdown fluctuation events in ultrathin SiO2 layers”, in Applied Physics Letters, vol. 73, no. 4, p. 490 1998.
[4.21] B.E. Weir, P.L. Silverman, D. Monroe, K.S. Krisch, M.A. Alam, G.B. Alers, T.W. Sorsch, G.L. Timp, F. Baumann, C.T. Liu, Y. Ma, and D. Hwang, “Ultra-Thin Gate Dielectrics: They Break Down, But Do They Fail? ”, in 1997 IEDM Techn. Digest, p. 73 1997.
[4.22] Robin Degraeve, Ben Kaczer, An De Keersgieter, and Guido Groeseneken, “Relation between breakdown mode and breakdown location in short channel NMOSFETs and its impact on reliability specifications”, in 2001 IRPS Proc., p.360 2001.
[4.23] Felice Crupi, Giuseppe Iannaccone, Isodiana Crupi, Robin Degraeve, Guido Groeseneken, and Herman E. Mase, “Characterization of Soft Breakdown in Thin Oxide NMOSFETs Based on the Analysis of the Substrate Current”, in IEEE Transaction on Electron Devices, vol. 48, no. 6, p. 1109 2001.
[4.24] J.H. Stathis, “Percolation models for gate oxide breakdown”, in Journal of Applied Physics, vol. 86, no. 10, p. 5757 1999.
[4.25] Enrique Miranda and Jordi Sune, “Mesoscopic approach to the soft breakdown failure mode in ultrathin SiO2 films”, in Applied Physics Letters, vol. 78, no. 2, p. 225 2001.
[4.26] E. Wu, E. Nowak, J. Aitken, W. Abadeer, L. K. Han, and S. Lo, “ Structural Dependence of Dielectric Breakdown in Ultra-Thin Gate Oxides and Its Relationship to Soft Breakdown Modes and Device Failure”, in 1998 IEDM Techn. Digest, p. 187 1998.
[4.27] S.K.H. Fung, N. Zamdmer, P.J. Oldiges, J. Sleight, A. Mocuta, M. Sherony, S-H. Lo, R. Joshi, C.T. Chuang, I. Yang, S. Crowder, T.C. Chen, F. Assaderaghi, and G. Shahidi, “Controlling floating-body effects for 0.13 �慆 and 0.1 �慆 SOI CMOS”, in 2000 IEDM Techn. Digest, p.231 2001.
[4.28] Hisayo Sasaki Momose, Hideki Kimijima, Shin-ichiro Ishizuka, Yasunori Miyahara, Tatsuya Ohguro, Takashi Yoshitomi, Eiji Morifuji, Shin-ichi Nakamura, Toyota Morimoto, Yasuhiro Katsumata and Hiroshi Iwai, “A Study of Flicker Noise in n- and p-MOSFETs with Ultra-Thin Gate Oxide in the Direct-Tunneling Regime”, in 1998 IEDM Tech. Digest, p.923 1998.
[4.29] L.K.J. Vandamme, Xiaosong Li and Dominique Rigaud, “1/f Noise in MOS Devices, Mobility or Number Fluctuations? ”, in IEEE Transaction on Electron Devices, vol. 41, no. 11, p. 1936 1994.
[4.30] Kwok K. Hung, Ping K. Ko, Chenming Hu and Yiu C. Cheng, “A Physics-Based MOSFET Noise Model for Circuit Simulators ”, in IEEE Transaction on Electron Devices, vol. 37, no. 5, p. 1323 1990.

Chapter 5
[5.1] Eli Harari, “Dielectric breakdown in electrically stressed thin films of thermal SiO2”, in Journal of Applied Physics, vol. 49, no.4, p. 2478 1978.
[5.2] I.C. Chen, S. Holland, K.K. Young, C. Chang and C. Hu “Substrate hole current and oxide breakdown”, in Applied Physics Letters, vol. 49, no. 11, p. 669 1986.
[5.3] M. Houssa, T. Nigam, P.W. Mertens and M.M. Heyns, “Model for the current-voltage characteristics of ultrathin gate oxides after soft breakdown”, in Journal of Applied Physics, vol. 84, no. 8, p. 4351 1998.
[5.4] E. Miranda, J. Sune, R. Rodriguez, M. Nafria and X. Aymerich, “Soft breakdown fluctuation events in ultrathin SiO2 layers”, in Applied Physics Letters, vol. 73, no. 4, p. 490 1998.
[5.5] T. Hosoi, P. L. Re, Y. Kamakura and K. Taniguchi, “A new model of time evolution of gate leakage current after soft-breakdown in ultra-thin gate oxides,” in 2002 IEDM Tech. Dig., p.155, 2002.
[5.6] B. P. Linder, S. Lombardo, J. Stathis, A. Vayshenker and D. Frank, “Voltage dependence of hard breakdown growth and the reliability implication in thin dielectrics,” in IEEE Electron Device Letters, Vol. 23, p.661, 2002.
[5.7] F. Monsieur, E. Vincent, D. Roy, S. Bruyere, J. C. Vildeuil, G. Pananakakis, and G. Ghibaudo, “A thorough investigation of progressive breakdown in ultra-thin oxides. Physical understanding and application for industrial reliability assessment,” in 2002 IRPS Proc., p.45, 2002.
[5.8] B. Kaczer, R. Degraeve, G. Groeseneken, M. Rasras, S. Kubicek, E. Vandamme, and G. Badenes, “Impact of MOSFET oxide breakdown on digital circuit operation and reliability,” in IEDM Tech. Dig., p.553, 2000.
[5.9] Barry P. Linder, James H. Stathis, David J. Frank, Salvatore Lombardo, and Alex Vayshenker, “Growth and Scaling of Oxide Conduction after Breakdown,” in 2003 IRPS Proc., p.402, 2003.
[5.10] E. Wu, E. Nowak, J. Aitken, W. Abadeer, L. K. Han, S. Lo, “Structural dependence of dielectric breakdown in ultra-thin gate oxides and its relationship to soft breakdown modes and device failure.” in IEDM Tech. Dig., p.187, 1998.
[5.11] S. Lombardo, F. Crupi, J. H. Stathis, “Softening of breakdown in ultra-thin gate oxide nMOSFETs at low inversion layer density.” In2001 IRPS Proc., p.163, 2001.
[5.12] B. P. Linder, J. H. Stathis, R. A. Wachnik, E. Wu, S. A. Cohen, A. Ray, A. Vayshenker, “Gate oxide breakdown under Current Limited Constant Voltage Stress.” in Symp. VLSI Tech., p. 214, 2000.
[5.13] M. A. Alam, R. K. Smith, B. E. Weir, and P. J. Silverman, “Statistically Independent Soft Breakdowns Redefine Oxide Reliability Specifications,” in IEDM Tech. Dig., p.151, 2002.
[5.14] Tahui Wang, C.W. Tsai, M.C. Chen, C.T. Chan, H.K. Chiang, S. Huang Lu, H.C. Hu, T.F. Chen, C.K. Yang, M.T. Lee, D.Y. Wu, J.K. Chen, S.C. Chien and S.W. Sun, “Negative Substrate Bias Enhanced Breakdown Hardness in Ultra-Thin Oxide pMOSFETs “ in 2003 IRPS Proc., p.437, 2003.
[5.15] T. Ouisse, G. Ghibaudo, J. Brini, S. Cristoloveanu and G. Borel, “Investigation of floating body effects in silicon-on-insulator metal-oxide-semiconductor field-effect transistors”, in Journal of Applied Physics, vol. 70, no.7, p. 3912 1991.
[5.16] J. Pretet, N. Subba, Dimitris Ioannou, Sorin Cristoloveanu, W. Maszara and C. Raynaud, “Reduced Floating Body Effects in Narrow Channel SOI MOSFETs”, in IEEE Electron Device Letters, vol. 23, no. 1, p.300 2002.
[5.17] T. Poiroux, O. Faynot, C. Tabone, H. Tigelaar, H. Mogul, N. Bresson and S. Cristoloveanu, “Emerging Floating-Body Effects in Advanced Partially-Depleted SOI Devices”, in 2002 IEEE International SOI Conference, p.99 2002.
[5.18] M.C. Chen, C.W. Tsai, S.H. Gu, Tahui Wang, S. Huang Lu, S.W. Lin, G.S. Yang, J.K. Chen, S.C. Chien, Y.T. Loh, and F.T. Liu, “Soft Breakdown Enhanced Hysteresis Effects in Ultra-Thin Oxide SOI nMOSFETs”, in 2002 IRPS Proc., p.404 2002.
[5.19] John S. Suehle, “Ultrathin Gate Oxide Reliability: Physical Models, Statistics, and Characterization,” in IEEE Transactions Electron Devices, vol. 49, p. 958, 2002.
[5.20] J.H. Stathis, “Percolation models for gate oxide breakdown”, in Journal of Applied Physics, vol. 86, no. 10, p. 5757 1999.
[5.21] Enrique Miranda and Jordi Sune, “Mesoscopic approach to the soft breakdown failure mode in ultrathin SiO2 films”, in Applied Physics Letters, vol. 78, no. 2, p. 225 2001.
[5.22] R. Degraeve, G. Groeseneken, R. Bellens, J.L. Ogier, M. Depas, P.J. Roussel, and H.E. Maes, “New insights in the relation between electron trap generation and the statistical properties of oxide breakdown,” in IEEE Transactions Electron Devices, vol. 45, p. 904, 1998.
[5.23] M. Rasras, I. De Wolf, G. Groeseneken, R. Degraeve, H. E. Maes, “Substrate hole current origin after oxide breakdown,” in 2000 IEDM Tech. Dig., p.537, 2000.
[5.24] S. Lombardo, A. La Magna, C. Spinella, C. Gerardi, and F. Crupi, “Degradation and hard breakdown transient of thin gate oxides in metal-SiO2-Si capacitors: dependence on oxide thickness,” in Journal of Applied Physics, vol. 86, p. 6382, 1999.
[5.24] R. Tsu and L. Esaki, “Tunneling in a finite superlattice,” in Applied Physics Letters, vol. 22, p. 562, 1973.
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top