跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/24 21:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范裕隆
研究生(外文):YuLong Fan
論文名稱:無線區域網路之即時服務排程演算法
論文名稱(外文):Real-Time Services Scheduling Control
指導教授:黃經堯黃經堯引用關係
指導教授(外文):Ching Yao Huang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:45
中文關鍵詞:無線區域網路媒體存取控制服務品質排程演算法
外文關鍵詞:Wireless Local Area NetworkMedium Access ControlQuality of ServiceScheduling Algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
IEEE 802.11無線區域網路已發展多年,隨著服務品質的需求,IEEE 802.11e根據原IEEE 802.11媒體存取控制層提出改良與增進的控制機制。無線區域網路的媒體存取機制可分成中央輪詢和分散競爭兩種:中央輪詢式媒體存取藉由一中央存取點(AP)負責分配無線網路頻寬;在分散競爭的存取環境下,各使用者(Station)競取共享頻寬。本論文主要探討前者,除了介紹標準文獻所提出的簡單排程演算法外,尚提出一以計時器為基底之演算法。經由完整的模擬結果而有以下三結論:一,中央輪詢式存取的頻寬使用效率優於分散競爭而可支援較多的使用者;二,相較於平等對待每一個使用者的簡單排程演算法,所提出的演算法提供區別性服務,在單考慮即時服務下,可支援較多使用者外;在考慮即時與非即時服務下,亦可增加非即時服務傳輸流量;三,二演算法本身都具有可調整之交易(tradeoff)參數,本研究除模擬其影響並交互比較,其結果亦顯示出所提之演算法相較於簡單演算法之優越性。
With the growing QoS requirements in Wireless Local Area Network (WLAN), it is crucial to emphasize the enhanced Medium Access Control (MAC) layer in the 802.11e. This thesis adopts the centralized polling-based scheduler mechanism rather than the distributed contention-based channel access to allocate the precious shared resource for each service. Besides of pointing out the equal treatment of the simple scheduling algorithm for all kinds of services, this thesis proposes a timer-based scheduling algorithm which is based on the concept of the Earliest Deadline First to improve the bandwidth utilization and support the differentiate QoS demands. Based on the complete comparisons by the simulation, the polling-based mechanism is superior to contention-based access on the bandwidth efficiency, which results in the higher capacity. Furthermore, the proposed algorithm provides better bandwidth utilization than the simple algorithm in the capacity and the data throughput under the QoS requirements. In addition, the influence of the adjustable tradeoff parameter for each algorithm itself is revealed.
[1] IEEE Std. 802.11, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications”, 1999.
[2] IEEE Std. 802.11b, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Higher-Speed Physical Layer Extension in the 2.4 GHz Band”, 1999.
[3] IEEE Std. 802.11a, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 1: High-speed Physical Layer in the 5 GHz Band”, 1999.
[4] IEEE Std. 802.11g, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz Band”, 2003.
[5] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function”, IEEE Journal, Selected Areas in Communication, vol. 18, no. 3, pp. 535-547, Mar. 2000.
[6] Y. Xiao and J. Rosdahl, “Throughput and Delay Limits of IEEE 802.11”, IEEE Communication Letter, vol. 6, no. 8, pp.355-357, Aug. 2002.
[7] J. Gozdecki, A. Jajszczyk and R. Stankiewicz, “Quality of Service Terminology in IP Networks”, IEEE Communication Magazine, vol. 41, no. 3, pp. 153-159, Mar. 2003.
[8] L. C. Wolf, C. Griwodz and R. Steinmetz, “Multimedia Communication”, Proceedings of the IEEE, vol. 85, no. 12, pp. 1915-1933, Dec.1997.
[9] IEEE Std. 802.11e/D3.0, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC) Enhancements for Quality of Service (QoS), May 2002.
[10] W. Pattara-Atikom, P. Krishnamurthy and S. Banerjee, “Distributed Mechanisms for Quality of Service in Wireless LANs”, IEEE Wireless Communication, vol. 10, no. 3, pp. 26-34, June, 2003.
[11] W. Liu, W. Lou, X. Chen and Y. Fang, “A QoS-enabled MAC Architecture for Prioritized Service in IEEE 802.11 WLANs”, IEEE GLOBECOM, vol.7, pp. 3802-3807, Dec. 2003.
[12] A. Grilo and M. Nunes, “Performance Evaluation of IEEE 802.11E”, IEEE PIMRC, vol. 1, pp. 511-517, Sept. 2002.
[13] H. Dajiang and C. Q. Shen, “Simulation Study of IEEE 802.11e EDCF”, IEEE VTC spring, vol. 1, pp. 22-25, April, 2003.

[14] D. Chen, D. Gu and J. Zhang, “Supporting Real-time Traffic with QoS in IEEE 802.11e Based Home Networks”, IEEE CCNC, pp. 205-209, Jan. 2004.
[15] Q. Ni, and T. Turletti, “QoS Support for IEEE 802.11 WLAN", Nova Science Publishers, New York, USA, 2004.
[16] J. D. Prado, A. Soomro and S. Shankar, “Normative Text for Mandatory TSPEC Parameters and Informative text for a Simple Scheduler”, IEEE 802.11-02/705ar0, 2002.
[17] A. Soomro, S. Shankar, J. D. Prado, Y. Ohtani, J. Kowalski, F. Simpson and I. L. W. Lih, “TGe Scheduler - Minimum Performance Requirements”, IEEE 802.11-02/709r0, 2002.
[18] Y.L. Fan and C.Y. Huang, “Timer Based Scheduling Control Algorithm in WLAN for Real-Time Services”, IEEE ISCAS, May 2005.
[19] Y.L. Fan and C.Y. Huang, “Real-Time Traffic Scheduling Algorithm in WLAN”, will be appeared in 4GMF, July 2005.
[20] A. Kopsel and A. Wolisz, “Voice Transmission in an IEEE 802.11 WLAN Based Access Network”, Proc. WoWMoM, pp. 23-32, July 2001.
[21] S. Choi, J. d, Prado, S. Shankar N and S. Mangold, “IEEE 802.11e Contention-Based Channel Access (EDCF) Performance Evaluation”, IEEE ICC, vol. 2, pp. 1151-1156, May 2003.
[22] ITU Rec. G.114, “One-Way Transmission Time”, Feb. 1996.
[23] T. J. Kostas, M. S. Borella, I. Sidhu,G. M. Schuster, J. Grabiec and J. Mahler, “Real-Time Voice over Packet-Switched networks”, IEEE Network, vol. 12, no. 1, pp. 18-27, Jan.-Feb. 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top