|
[1] T. Hori, Gate Dielectrics and MOS ULSIs, p. 43. [2] G. Bavvarani, M. R. Wordeman and R.H. Rennard, “Generalized scaling theory and its application to a 1/4 micrometer MOSFET design,” IEEE Trans. Electron Devices, vol. 31, no. 4, p. 452, Apr. 1984. [3] P. A. Packan, “Device physics: pushing the limits,” Science, vol. 285, p. 2079, 1999 [4] T. H. Ning, “Silicon technology directions in the new millennium,” in Proc. Int. Reliab. Phys. Symp., 2000, p. 1. [5] M. T. Bohr, “Technology development strategies for the 21st century,” Appl. Surf. Sci., vol. 100-101, p. 534, July 1996. [6] Y. Taur, D. Buchanan, W. Chen, D. J. Frank, K. I. Ismail, S.-H. Lo, G. A. Sai-Halasz, R. G. Viswanathan, H.-J. C. Wann, S.J. Wind, and H.-S. Wong, “CMOS scaling into the nanometer regime,” in Proc. IEEE, vol. 85, no. 4, p. 486, Apr. 1997. [7] Y.-C. Yeo, T.-J. King and C. Hu, “Direct tunneling leakage current and scalability of alternative gate dielectrics,” Appl. Phys. Lett., vol. 81, no. 11, p. 2091, Sep. 2002. [8] H. Hwang, W. Ting, B. Maiti, D. L. Kwong and J. Lee, “Electrical characteristics of ulthathin oxynitride gate dielectrics prepared by rapid thermal oxidation of silicon in N2O,” Appl. Phys. Lett., vol. 57, no. 10, p. 1010, Sep. 1990. [9] M. Bhat, L. K. Han, D. Wristers, J. Yan, D. L. Kwong and J. Fulford, “Effect of chemical composition on the electrical properties of NO-nitrided SiO2,” Appl. Phys. Lett., vol. 66, no. 10, p. 1225, Mar. 1995. [10] S. V. Hattangady, H. Niimi and G. Lucovsky, “Controlled nitrogen incorporation at the gate oxide surface,” Appl. Phys. Lett., vol. 66, no. 25, p. 3495, June 1995. [11] W. L. Hill, E. M. Vogel, V. Misra, P. K. McLarty and J. J. Wortmsn, “Low pressure rapid thermal CVD of oxynitride gate dielectrics for N-channel and P-channel MOSFETs,” IEEE Trans. Electron Devices, vol. 43, no. 1, p. 15, Jan. 1996. [12] T. Hori, “Nitrided gate-oxide CMOS technology for improved hot-carrier reliability,” Microelectron. Eng., vol. 22, p. 245, 1993. [13] E. P. Gusev, H.-C. Lu, E. L. Garfunkel, T. Gustafsson and M. L. Green, “Growth and characterization of ultrathin nitrided silicon oxide films,” IBM J. Res. Develop., vol. 43, p. 265, 1999. [14] M. Fujiwara, M. takayanagi, T. Shimizu and Y. Toyoshima, “Extending gate dielectric scaling limit by NO oxynitride:design and process issues for sub-100nm technology,” in IEDM Tech. Dig., 2000, p. 227. [15] E. Cartier, D.A. Buchanan and G. J. Dunn, “Atomic hydrogen-induced interface degradation of reoxidized-nitrided silicon dioxide on silicon,” Appl. Phys. Lett., vol. 64, no. 7, p. 901, Feb. 1994. [16] D. M. Brown, P. V. Gray, F. K. Heumann, H. R. Philipp and E. A. Taft, “Properties of SixOyNz films on Si,” J. of Electrochem. Soc., vol. 115, p. 311, 1968. [17] D. A. Buchanan, E. P. Gusev, E. Cartier, H. Okorn-Schmidt, K. Rim, M. A. Gribelyuk, A. Mocuta, A. Ajmera, M. Copel, S. Guha, N. Bojarczuk, A. Callegari, C. D’Emic, P. Kozlowski, K. Chan, R. J. Fleming, P. C. Jamison, J. Brown and R. Amdt, “80nm poly-silicon gated n-FETs with ultra-thin Al2O3 gate dielectric for ULSI applications,” in IEDM Tech. Dig., 2000, p.223. [18] S.-J. Ding, H. Hu, C. Zhu, M. F. Li, S. J. Kim, B. J. Cho, D. S. H. Chan, M. B. Yu, A. T. Du, A. Chin and D. L. Kwong, “Evidence and understanding of ALD HfO2-Al2O3 laminate MIM capacitors outperforming sandwich counterpart,” IEEE Electron Device Lett., vol. 24, no. 10, p. 681, Oct. 2004. [19] J. C. Wang, S. H. Chiao, C. L. Lee, T. F. Lei, Y. M. Lin, M. F. Wang, S. C. Chen, C. H. Yu and M. S. Liang, “A physical model for the hysteresis phenomenon of the ultrathin ZrO2 film,” J. Appl. Phys., vol. 92, no. 7, p. 3936, Oct. 2002. [20] B. Tavel, X. Garros, T. Skotnicki, F. Martin, C. Leroux, D. Bensahel, M. N. Séméria, Y. Morand, J. F. Danlencourt, S. Descombes, F. Leverd, Y. Le-Friec, P. Leduc, M. Rivoire, S. Jullian and R. Pantel, “High performance 40nm nMOSFETs with HfO2 gate dielectric and polysilicon damascene gate,” in IEDM Tech. Dig., 2002, p. 429. [21] W. -H. Lee, J. T. Clemens, R. C. Keller and L. Manchanda, “A novel high k inter-poly dielectric (IPD), Al2O3 for low voltage/high speed flash memories: erasing in msecs at 3.3V,” in VLSI Tech. Symp. Dig., 1997, p. 117. [22] Y. Y. Chen, C. H. Chien and J. C. Lou, “High quality Al2O3 IPD with NH3 surface nitridation,” IEEE Electron Device Lett., vol. 24, no. 8, p. 503, Aug. 2003. [23] Y. Y. Chen, C. H. Chien and J. C. Lou, “Characteristics of the inter-poly Al2O3 dielectrics on NH3-nitrided bottom poly-Si for next-generation flash memories,” Jpn. J. Appl. Phys., vol. 44, no. 4A, p. 1704, 2005. [24] T. Sugiyama, M. Kobayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi and H. Tanaka, “Novel multi-bit SONOS type flash memory using a high-�� charge trapping layer,” in VLSI Tech. Symp. Dig., 2003, p. 27. [25] B. Govoreanu, P. Blomme, J. Van Houdt and K. De Meyer, “Simulation of nanofloating gate memory with high-�� stacked dielectrics,” in Simulation of Semiconductor Processes and Devices, 2003, p. 299. [26] D.-W. Kim, T. Kim and S. K. Banerjee, “Memory characterization of SiGe quantum dot flash memories with HfO2 and SiO2 tunneling dielectrics,” IEEE Trans. Electron Devices, vol. 50, no. 9, p. 1823, Sep. 2003. [27] Y. Y. Chen, J. C. Lou, T. H. Perng, C. W. Chen and C. H. Chien, “The impact of high-�� inter-poly dielectrics (IPD) on the programming/erasing performances of stacked-gate flash memories,” in Electron Devices and Materials Symposia, 2003, p. 42. [28] The International Technology Roadmap for Semiconductors, 2004 update ed., Semiconductor Industry Assoc. [29] L. Faraone and G. Harbeke, “Surface roughness and electrical conduction of oxide/polysilicon interfaces,” J. Electrochem. Soc., vol. 133, no. 7, p. 1410, July. 1986. [30] S. Mori, E. Sakagami, H. Araki, Y. Kaneko, K. Narita, Y. Ohshima, N. Arai and K. Yoshikawa, “ONO inter-poly dielectric scaling for nonvolatile memory applications,” IEEE Trans. Electron Devices, vol. 38, no. 2, p. 386, Feb. 1991. [31] C. S. Lai, T. F. Lei and C. L. Lee, “The characteristics of polysilicon oxide grown in pure N2O,” IEEE Trans. Electron Devices, vol. 43, no. 2, p. 326, Feb. 1996. [32] T. M Pan, T. F. Lei, W. L. Yang, C. M. Cheng and T. S. Chao, “High quality interpoly-oxynitride grown by NH3 nitridation and N2O RTA treatment,” IEEE Electron Device Lett., vol. 22, no. 2, p. 68, Feb. 2001. [33] K. Yoshikawa, “Research challenges for next decade flash memories,” Int. Electron Devices and Materials Symposia, 2000, p. 11. [34] Y. Yamaguchi, E. Sakagami, N. Arai, M. Sato, E. Kamiya, K. Yoshikawa, H. Meguro, H. Tsunoda and S. Mori, “ONO interpoly dielectric scaling limit for non-volatile memory devices,” in VLSI Tech. Symp. Dig., 1993, p. 85. [35] J. D. Bude, A. Frommer, M. R. Pinto and G. R. Weber, “EEPROM/flash sub 3.0 V drain-source bias hot carrier writing,” in IEDM Tech. Dig., 1995, p. 989. [36] S. Ueno, H. Oda, N. Ajika, M. Inuishi and H. Miyoshi, “Optimum voltage scaling methodology for low voltage operation of CHE type flash EEPROMs with high reliability, maintaining the constant performance,” in VLSI Tech. Symp. Dig., 1996, p. 54. [37] C. Cobianu, O. Popa and D. Dascalu, “On the electrical conduction in the interpolysilicon dielectric layers,” IEEE Electron Device Lett., vol. 14, no. 5, p. 213, May. 1993. [38] T. One, T. Mori, E. Ajioka and T. Takayashiki, “Studies of thin poly-Si oxides for E and E2PROM,” in IEDM Tech. Dig., 1985, p. 380. [39] J. C. Lee and C. Hu, “Polarity asymmetry of oxides grown on polycrystalline silicon,” IEEE Trans. Electron Devices, vol. 35, no. 7, p. 1063, July 1988. [40] L. Faraone, “Thermal SiO2 films on n+ polycrystalline silicon: electrical conduction and breakdown,” IEEE Trans. Electron Devices, vol. 33, no. 11, p. 1785, Nov. 1986. [41] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa, A. Ishitani and T. Okazawa, “A high capacitive-coupling ratio (HiCR) cell for 3V-only 64 Mbits and future memories,” in IEDM Tech. Dig., 1993, p. 19. [42] M. Kato, T. Adachi, T. Tanaka, A. Sato, T. Kobayashi, Y. Sudo, T. Morimoto, H. Kume, T. Nishida and K. Kimura, “A 0.4-um2 self-aligned contactless memory cell technology suitable for 256-Mbit flash memories,” in IEDM Tech. Dig., 1994, p.921. [43] T. Takeshima, H. Sugawara, H. Takada, Y. Hisamune, K. Kanamori, T. Okazawa, T. Murotani and I. Sasaki, “A 3.3V single-power-supply 64Mb flash memory with dynamic bit-line latch (DBL) programming scheme,” in ISSCC Tech. Dig., 1994, p. 148. [44] Y. Yamauchi, M. Yoshimi, S. Sato, H. Tabuchi, N. Takenaka and K. Sakiyam, “A new cell structure for sub-quarter micron high density flash memory,” in IEDM Tech. Dig., 1995, p. 267. [45] T. Kobayashi, N. Matsuzaki, A. Sato, A. Katayama, H. Kurata, A. Miura, T. Mine, Y. Goto, T. Morimoto, H. Kume, T. Kure and K. Kimura, “A 0.24-um2 cell process with 0.18-um width isolation and 3-D interpoly dielectric films for 1-Gb flash memories,” in IEDM Tech. Dig., 1997, p. 275. [46] H. Shirai, T. Kubota, I. Honma, H. Watanabe, H. Ono and T. Okazawa, “A 0.54 um2 self-aligned, HSG floating gate cell (SAHF cell) for 256 Mbit flash memories,” in IEDM Tech. Dig., 1995, p. 653. [47] T. Kitamura, M. Kawata, I. Honma, I. Yamamoto, S. Nishimoto and K. Oyama, “A low voltage operating flash memory cell with high coupling ratio using horned floating gate with fine HSG,” in VLSI Tech. Symp. Dig., 1998, p. 104. [48] J.-D. Choi, J.-H. Lee, W.-H. Lee, K.-S. Shin. Y.-S. Yim. J.-D. Lee, Y.-C. Shin, S.-N. Chang, K.-C. Park, J.-W. Park and C.-G. Hwang, “A 0.15 um NAND flash technology with 0.11 um2 cell size for 1 Gbit flash memory,” in IEDM Tech. Dig., 2000, p. 767. [49] N. Matsuo and A. Sasaki, “Electrical characteristics of oxide-nitride-oxide films formed on tunnel-structured stacked capacitors,” IEEE Trans. Electron Devices, vol. 42, no. 7, p. 1340, July 1995. [50] S. Holland, “An oxide-nitride-oxide capacitor dielectric film for silicon strip detectors,” IEEE Trans. Nuclear Science, vol. 42, no. 8, p. 423, Aug. 1995. [51] C. L. Cha, E. F. Chor, H. Gong, A. Q. Zhang and L. Chan, “Breakdown of reoxidized nitrided oxide (ONO) in flash memory devices upon current stressing,” in IEEE Electron Devices Meeting, Hong Kong, 1997, p. 82. [52] S. J. Lee, C. H. Lee, Y. H. Kim, H. F. Luan, W. P. Bai, T. S. Jeon and D. L. Kwong, “High-�� gate dielectrics for sub-100 nm CMOS technology,” in International Conference on Solid-State and Integrated-Circuit Technology, 2001, p. 303. [53] C. B. Oh, H. S. Kang, H. J. Ryu, M. H. Oh, H. S. Jung, Y. S. Kim, J. H. He, N. I. Lee, K. H. Cho, D. H. Lee, T. H. Yang, I. S. Cho, H. K. Kang, Y. W. Kim and K. P. Suh, “Manufacturable embedded CMOS 6T-SRAM technology with high-�� gate dielectric device for system-on-chip application,” in IEDM Tech. Dig., 2002, p. 423. [54] M. Cho, H. B. Park, J. Park, S. W. Lee, C. S. Hwang, G. H. Jang and J. Jeong, “High-�� properties of atomic-layer-deposited HfO2 films using a nitrogen-containing Hf[N(CH3)2]4 precursor and H2O oxidant,” Appl. Phys. Lett., vol. 83, no. 26, p. 5503, Dec. 2003. [55] M. Heyns, S. Beckx, H. Bender, P. Blomme, W. Boullart, B. Brijs, R. Carter, M. Caymax, M. Claes, T. Conard, S. De Gendt, R. Degraeve, A. Delabie, W. Deweerdt, G. Groeseneken, K. Henson, T. Kauerauf, S. Kubicek, L. Lucci, G. Lujan, J. Mentens, L. Pantisano, J. Petry, O. Richard, E. Rohr, T. Schram, W. Vandervorst, P. Van Doorne, S. Van Elshocht, J. Westlinder, T. Witters, C. Zhao, E. Cartier, J. Chen, V. Cosnier, M. Green, S. E. Jang, V. Kaushik, A. Kerber, J. Kluth, S. Lin, W. Tsai, E. Young, V. Manabe, Y. Shimamoto, P. Bajolet, H. De Witte, J. W. Maes, L. Date, D. Pique, B. Coebegrachts, J. Vertommen and S. Passefort, “Scaling of high-�� dielectrics towards sub-1nm EOT,” in VLSI Tech. Symp. Dig., 2003, p. 247. [56] A. S. Oates, “Reliability issues for high-�� gate dielectrics,” in IEDM Tech. Dig., 2003, p. 923. [57] S. K. Kim and C. S. Hwang, “Atomic-layer-deposited Al2O3 thin films with thin SiO2 layers grown by in-situ O3 oxidation,” J. Appl. Phys., vol. 96, no. 4, p. 2323, Aug. 2004. [58] D. L. Kwong, “CMOS integration issues with high-�� gate stack,” in International Symp. on the Phys. and Failure Analysis of Integrated Circuits, 2004, p. 17. [59] C. C. Fulton, T. E. Cook, G. Lucovsky and R. J. Nemanich, “Interface instabilities and electronic properties of ZrO2 on silicon,” J. Appl. Phys., vol. 96, no. 5, p. 2665, Sep. 2004. [60] Y. Tanida, Y. Tamura, S. Miyagaki, M. Tamaguchi, C. Yoshida, Y. Sugiyama and H. Tanaka, “Effect of in-situ nitrogen doping into MOCVD-grown Al2O3 to improve electrical characteristics of MOSFETs with polisilicon gate,” in VLSI Tech. Symp. Dig., 2002, p. 190. [61] S. Saito, Y. Shimamoto, S. Tsujikawa, H. Hamamura, O. Tonomura, D. Hisamoto, T. Mine, K. Torii, J. Yugami, M. Hiratani, T. Onai and S. Kimura, “Impact of oxygen-enriched SiN interface on Al2O3 gate stack an innovative solution to low-power CMOS,” in VLSI Tech. Symp. Dig., 2003, p. 145. [62] J. B. Kim, D. R. Kwon, K. Chakrabarti, C. Lee, K. Y. Oh and J. H. Lee, “Improvement in Al2O3 dielectric behavior by using ozone as an oxidant for the atomic layer deposition technique,” J. Appl. Phys., vol. 92, no. 11, p. 6739, Dec. 2002. [63] B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi and J. C. Lee, “Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application,” in IEDM Tech. Dig., 1999, p. 133. [64] S. J. Lee, H. F. Luan, T. S. Jeon, W. P. Bai, Y. Senzaki, D. Roberts abd D. L. Kwong, “Performance and reliability of ultra thin CVD HfO2 gate dielectrics with dual poly-Si gate electrodes,” in VLSI Tech. Symp. Dig., 2001, p.133 [65] H. Y. Yu, J. F. Kang, J. D. Chen, C. Ren, Y. T. Hou, S. J. Whang, M. F. Li, D. S. H. Chan, K. L. Bera, C. H. Tung, A. Du and D. L. Kwong, “Thermally robust high quality HfN/HfO2 gate stack for advanced CMOS devices,” in IEDM Tech. Dig., 2003, p. 99. [66] S. B. Samavedam, L. B. La, J. Smith, S. Dakshina-Murthy, E. Luckowski, J. Schaeffer, M. Zavala, R. Martin, V. Dhandapani, D. Triyoso, H. H. Tseng, P. J. Tobin, D. C. Gilmer, C. Hobbs, W. J. Taylor, J. M. Grant, R. I. Hegde, J. Mogab, C. Thomas, P. Abramowitz, M. Moosa, J. Conner, J. Jiang, V. Arunachalam, M. Sadd, B. Y. Nguyen and B. White, “Dual-metal gate CMOS with HfO2 gate dielectric,” in IEDM Tech. Dig., 2002, p. 433. [67] J. H. Lee, K. Koh, N. I. Lee, M. H. Cho. Y. K. Ki, J. S. Jeon, K. H. Cho, H. S. Shin, M. H. Kim, K. Fujihara, H. K. Kang, and J. T. Moon, “Effects of polysilicon gate on the flatband voltage shift and mobility degradation for ALD-Al2O3 gate dielectric,” in IEDM Tech. Dig., 2000, p. 645. [68] H. Hu, C. Zhu, X. Yu, A. Chin, M. F. Li, B.J. Cho, D. L. Kwong, P. D. Foo, M. B. Yu, X. Liu and J. Winkler, “MIM capacitors using atomic-layer-deposited high-�� (HfO2)1-x(Al2O3)x dielectrics,” IEEE Electron Device Lett., vol. 24, no. 2, p. 60, Feb. 2003. [69] A. C. Jones, Chemical Vapor Deposition, 4, 169(1998) [70] J. F. Roeder, T. H. Baum, S. M. Bilodeau, G. T. Stauf, C. Ragaglia, M. W. Russell and P. C. Van Buskirk, “Liquid-delivery MOCVD: chemical and process perspectives on ferro-electric thin film growth,” Adv. Mater. Opt. Electron., vol. 10, no. 3, p. 145, 2000. [71] G. D. Wilk, R. M. Wallace and J. M. Anthony, “High-�� gate dielectrics: current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, p. 5243, May 2001. [72] Rino Choi, C. S. Kang, B. H. Lee, K. Onishi, R. Nieh, S. Gopalan, E. Dharmarajan and J. C. Lee, “High-quality ultra-thin HfO2 gate dielectric MOSFETs with TaN electrode and nitridation surface preparation,” in VLSI Tech. Symp. Dig., 2001, p. 15. [73] K. Onishi, L. Kang, R. Choi, E. Dharmarajan, S. Gopalan, Y.-J. Jeon, C. S. Kang, B. H. Lee, R. Nieh and J. C. Lee, “Dopant penetration effects on polysilicon gate HfO2 MOSFETs,” in VLSI Tech. Symp. Dig., 2001, p. 131. [74] H.-J. Cho, D. G. Park, I.-S. Yeo, J.-S. Roh and J. W. Park, “Characteristics of TaOxNy gate dielectric with improved thermal stability,” Jpn. J. Appl. Phys., vol. 40, p. 2814, 2001. [75] H.-J. Cho, C. S. Kang, K. Onishi, S. Gopalan, R. Nieh, R. Choi, E. Dharmarajan and J. C. Lee, “Novel nitrogen profile engineering for improved TaN/HfO2/Si MOSFET performance,” in IEDM Tech. Dig., 2001, p. 30.2.1. [76] A. L. P. Rotondaro, M. R. Visokay, J. J. Chambers, A. Shanware, R. Khamankar, H. Bu, R. T. Laaksonen, L. Tsung, M. Douglas, R. Kuan, M. J. Bevan, T. Grider, J. McPherson and L. Colombo, “Advanced CMOS Transistors with a novel HfSiON gate dielectric,” in VLSI Tech. Symp. Dig., 2002, p. 148. [77] M. Koyama, K. Suguro, M. Yoshiki, Y. Kamimuta, M. Koike, M. Ohse, C. Hongo and A. Nishiyama, “Thermally stable ultra-thin nitrogen incorporated ZrO2 gate dielectric prepared by low temperature oxidation of ZrN,” in VLSI Tech. Symp. Dig., 2001, p. 459. [78] T. M. Pan, T. F. Lei and T. S. Chao, “Robust ultrathin oxynitride dielectrics by NH3 nitridation and N2O RTA treatment,” IEEE Electron Device Lett., vol. 21, no. 8, p. 378, Aug. 2000. [79] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B., vol. 18, no.3, p. 1785, May 2000 [80] E. P. Gusev, D. A. Buchanan, E. Cartier, A. Kumar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P. C. Jamison, D. A. Neumater, M. Copel, M. A. Gribelyuk, H. Okorn-Schmidt, C. D’Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L. A. Ragnarsson, P. Ronsheim, K. Rim, R. J. Fleming, A. Mocuta and A. Ajmera, “Ultrathin high-�� gate stacks for advanced CMOS devices,” in IEDM Tech. Dig., 2001, p. 451. [81] K. F. Schuegraf and C. Hu, “Hole injection SiO2 breakdown model for very low voltage lifetime extrapolation,” IEEE Trans. Electron Devices, vol. 41, no. 5, p. 761, May 1994. [82] I. C. Chen, S. Holland, K. K. Young, C. Chang and C. Hu, “Substrate hole current and oxide breakdown,” Appl. Phys. Lett., vol. 49, no. 11, p. 669, 1986. [83] J. C. Lee, “Ultra-thin gate dielectrics and high-�� dielectrics,” IEEE EDS vanguard series of independent short courses. [84] L. Kang, K. Onishi, Y. Jeon, B. H. Lee, C. Kang, W. J. Qi, R. Nieh, S. Gopalan, R. Choi and J. C. Lee, “MOSFET devices with polysilicon on single-layer HfO2 high-�� dielectrics,” in IEDM Tech. Dig., 2000, p. 35. [85] S. J. Lee, H. F. Luan, W. P. Bai, C. H. Lee, T. S. Jeon, Y. Senzaki, D. Roberts and D. L. Kwong, “High quality ultra-thin CVD HfO2 gate stack with poly-Si gate electrode,” in IEDM Tech. Dig., 2000, p. 31. [86] P. S. Lyaaght, B. Foran, G. Bersuker, R. Tichy, L. Larson, R. W. Murto and H. R. Huff, “Physical characterization of high-�� gate dielectric film systems processed by RTA and spike anneal,” Advanced Thermal Processing of Semiconductors, 2002. RTP 2002. 10th IEEE International Conference of 25-27 Sept. 2002 Page(s):93-98. [87] Ernest Y. Wu and R.-P. Vollertsen, “On the Weibull shape factor of intrinsic breakdown of dielectric films and its accurate experimental determination―Part I: theory, methodology, experimental techniques,” IEEE Trans. Electron Devices, vol. 49, no. 12, p. 2131, Dec. 2002. [88] Ernest Y. Wu, J. Suñé and W. Lai, “On the Weibull shape factor of intrinsic breakdown of dielectric films and its accurate experimental determination―Part II: experimental results and the effects of stress conditions,” IEEE Trans. Electron Devices, vol. 49, no. 12, p. 2141, Dec. 2002.
|