|
[1] M. Kobayashi, T. Murase, and A. Kuriyama, “A Longest Prefix Match Search Engine for Multi-Gigabit IP Processing,” IEEE International Conference on Communications, Vol. 3, pp. 1360-1364, June 2000 [2] R. Panigrahy and S. Sharma, “Sorting and Searching Using Ternary CAMs,” IEEE Micro, Vol. 22, No. 1, pp. 58-64, Jan.-Feb. 2002. [3] L. Zhiyong, J. Wu, and Ke Xu, “A TCAM-Based IP Lookup Scheme for Multi-Nexthop Routing,” International Conference on Computer Networks and Mobile Computing (ICCNMC 2003), pp. 128-135, Oct. 2003. [4] H. Liu, “Efficient Mapping of Range Classifier into Ternary-CAM,” Proceedings of 10th Symposium on High Performance Interconnects, pp. 95-100, Aug. 2002. [5] S. Hanzawa, T. Sakata, K. Kajigaya, R. Takemura, and T. Kawahara, “A Large-Scale and Low-Power CAM Architecture Featuring a One-Hot-Spot Block Code for IP-Address Lookup in a Network Router,” International Journal of Solid-State Circuits, Vol. 40, No. 4, April 2005. [6] B. Gamache, Z. Pfeffer, and S. P. Khatri, “A fast ternary CAM design for IP networking applications,” Proceedings of The 12th International Conference on Computer Communications and Networks (ICCCN 2003), pp. 434-439, Oct. 2003. [7] D.E. Taylor, J.S. Turner, J.W. Lockwood, T.S. Sproull, and D.B. Parlour, “Scalable IP Lookup for Internet Routers,” IEEE Journal on Selected Areas in Communications, Vol. 21, No. 4, pp. 522-534, May 2003. [8] Http://www-device.eecs.berkeley.edu: BSIM 100nm and 70nm predictive technology process files. [9] International Technology Roadmap for Semiconductors 2001 edition, Semiconductor Industry Association, http://public.itrs.net. [10] F. Shafai, K.J. Schultz, G.F.R. Gibson, A.G. Bluschke, D.E. Somppi, “Fully Parallel 30-MHz, 2.5-Mb CAM,” IEEE Journal of Solid-State Circuits, Vol. 33, No. 11, pp. 1690-1696, Nov. 1998. [11] P.F. Lin and J.B. Kuo, “1-V 128-kb Four-Way Set-Associative CMOS Cache Memory Using Wordline-Oriented Tag-Compare (WLOTC) Structure with the Content Addressable-Memory (CAM) 10-transistor Tag Cell,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 4, pp.666-675, April 2001. [12] H. Miyatake and M. Tanaka and Y. Mori, “A Design for High-Speed Low-Power CMOS Fully Parallel Content-Addressable Memory Macros,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 6, pp.956-968, June 2001. [13] I. Arsovski and A. Sheikholeslami, “A Mismatch-Dependent Power Allocation Technique for Match-Line Sensing in Content-Addressable Memories,” IEEE Journal of Solid-State Circuits, Vol. 38, No. 11, Nov. 2003. [14] I. Arsovski, T. Chandler and A. Sheikholeslami, “A Ternary Content-Addressable Memory (TCAM) Based on 4T Static Storage and Including a Current-Race Sensing Scheme,” IEEE Journal of Solid-State Circuits, Vol. 38, No. 1, pp.155-158, Jan. 2003. [15] A. Roth, D. Foss, R. McKenzie and D. Perry, “Advanced Ternary CAM Circuits on 0.13μm Logic Process Technology,” Proceedings of the IEEE 2004 Custom Integrated Circuits Conference, pp. 465-468, Oct. 2004. [16] G. Kasai, Y. Takarabe, K. Furumi and M. Yoneda, “200MHz/200MSPS 3.2W at 1.5V Vdd, 9.4Mbits ternary CAM with New Charge Injection Match Detect Circuits and Bank Selection Scheme,” Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, pp. 387-390, Sept. 2003. [17] H. Noda, K. Inoue, H.J. Mattausch, T. Koide, K. Arimoto, “A Cost-Efficient Dynamic Ternary CAM in 130 nm CMOS Technology with Planar Complementary Capacitors and TSR Architecture,” Symposium on VLSI Circuits Digest of Technical Papers. pp.83-84, June 2003. [18] V. Lines, A. Ahmed, P. Ma, S. Ma, R. McKenzie, H.S. Kim and C. Mar, “66 MHz 2.3 M Ternary Dynamic Content Addressable Memory,” Records of the 2000 IEEE International Workshop on Memory Technology Design and Testing, pp.101-105, Aug. 2000. [19] J.G. Delgado-Frias, A. Yu and J. Nyathi, “A Dynamic Content Addressable Memory Using a 4-transistor Cell,” Third International Workshop on Design of Mixed-Mode Integrated Circuits and Applications, pp.110-113, July 1999. [20] H. Noda, K. Inoue, M. Kuroiwa, F. Igaue, K. Yamamoto, H.J. Mattausch, T. Koide, A. Amo, A. Hachisuka, S. Soeda, I. Hayashi, F. Morishita, K. Dosaka, K. Arimoto, K. Fujishima, K. Anami, T. Yoshihara, “A Cost-Efficient High-Performance Dynamic TCAM with Pipelined Hierarchical Searching and Shift Redundancy Architecture,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 1, pp. 245-253, Jan. 2005. [21] D. A. Patterson and J. L. Hennessy, “Computer Organization and Design,” Morgan Kaufmann, 2nd edition. [22] J. L. Hennessy and D. A. Patterson, “Computer Architecture,” Morgan Kaufmann, 3rd edition. [23] Http://www.commsdesign.com/main/1999/11/9911feat3.htm:Using Content Addressable Memory for Networking Applications [24] Http://www.eecg.toronto.edu/~pagiamt/: Content-Addressable Memory (CAM) Primer. [25] N. Mohan and M. Sachdev, “Low Power Dual Matchline Ternary Content Addressable Memory,” Proceedings of the 2004 International Symposium on Circuits and Systems (ISCAS '04), Vol. 2, pp.633-636, May 2004. [26] C.A. Zukowski and S.Y. Wang, “Use of Selective Precharge for Low-Power on the Match Lines of Content-Addressable Memories,” Proceedings of 1997 International Workshop on Memory Technology, Design and Testing, pp. 64-68, Aug. 1997. [27] K. Pagiamtzis and A. Sheikholeslami, “Pipelined Match-lines and Hierarchical Search-Lines for Low-Power Content-Addressable Memories,” Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, pp. 383-386, Sept. 2003. [28] N. Mohan and M. Sachdev, “A Static Power Reduction Technique for Ternary Content Addressable Memories,” Canadian Conference on Electrical and Computer Engineering, Vol.2, pp.711-714, May 2004. [29] C.S. Lin, J.C. Chang, and B.D. Liu, “A Low-Power Precomputation-Based Fully Parallel Content-Addressable Memory,” IEEE Journal of Solid-State Circuits, Vol. 38, No. 4, pp.654-662, April 2003. [30] K. Pagiamtzis and A. Sheikholeslami, “A Low-Power Content-Addressable Memory (CAM) Using Pipelined Hierarchical Search Scheme,” IEEE Journal of Solid-State Circuits, Vol. 39, No. 9, pp.1512-1519, Sept. 2004. [31] K.H. Cheng, C.H. Wei and S.Y. Jiang, “Static Divided Word Matching Line for Low-Power Content Addressable Memory Design,” Proceedings of the 2004 International Symposium on Circuits and Systems (ISCAS’04), Vol. 2, pp. 629-632, May 2004. [32] S. Choi, K. Sohn, and H.J. Yoo, “A 0.7-fJ/bit/search 2.2-ns Search Yime Hybrid-Type TCAM Architecture,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 1, pp.254-260, Jan. 2005. [33] J. Kao and A. Chandrakasan, “Dual-Threshold Voltage Techniques for Low-Power Digital Circuits,” IEEE Journal of Solid-State Circuits, Vol. 35, No. 7, pp. 1009-1018, July 2000. [34] C.H. Hus, “Low Power Multi-Port Register File Design for Digital Sognal Processor,” Master thesis, National Chiao-Tung University, June 2003. [35] H. Qin, Y. Cao, D. Markovic, A. Vladimirescu, and J. Rabaey, “SRAM Leakage Suppression by Minimizing Standby Supply Voltage,” Proceedings of 5th International Symposium on Quality Electronic Design, pp.55-60, 2004. [36] T. Kawahara, M. Horiguchi, Y. Kawajiri, G. Kitsukawa, T. Kure, and M. Aoki, “Subthreshold Current Reduction for Decoded-Driver by Self-Reverse Biasing,” IEEE Journal of Solid-State Circuits, Vol. 28, No. 11, pp. 1136-1144, Nov. 1993. [37] Z. Chen, M. Johnson, L. Wei, and K. Roy, “Estimation of Standby Leakage Power in CMOS Circuits Considering Accurate Modeling of Transistors Stacks,” International Symposium on Low Power Electronics and Design, pp. 239-244, 1998. [38] A. Agarwal, and Kaushik Roy, “A Noise Tolerant Cache Design to Reduce Gate and Sub-threshold Leakage in the Nanometer Regime,” International Symposium on Low Power Electronics and Design, pp. 18-21, Aug. 2003. [39] E. Seevinck, F. J. List, and J. Lohstroh, “Static-Noise Margin Analysis of MOS SRAM Cells,” IEEE Journal of Solid-State Circuits, Vol. 22, No.5, pp. 748-754, Oct. 1987. [40] T.S. Cheng, “Dynamic Body-Biasing and Power-Gating Techniques for Low Power Design,” Master thesis, National Chiao-Tung University, June 2004. [41] A. Agarwal, H. Li, and K. Roy, “A Single-Vt Low-Leakage Gated-Ground Cache for Deep Submicron,” IEEE Journal of Solid-State Circuits, Vol. 38, No.2, pp. 319-328, Feb. 2003. [42] K. Kanda, H. Sadaaki, and T. Sakurai, “90% Write Power-Saving SRAM Using Sense-Amplifying Memory Cell,” IEEE Journal of Solid-State Circuits, Vol. 39, No. 6, pp. 927-933, June 2004. [43] H.C. Chow and S.H. Chang, “High Performance Sense Amplifier Circuit for Low Power SRAM Applications,” Proceedings of the 2004 International Symposium on Circuits and Systems (ISCAS '04), Vol.2, pp. II - 741-4, May 2004. [44] M. Sinha, S. Hsu, A. Alvandpour, W. Burleson, R. Krishnamurthy, and S. Borkar, “High-Performance and Low-Voltage Sense-Amplifier Techniques for Sub-90nm SRAM,” Proceedings of 2003 IEEE International [Systems-on-Chip] SOC Conference, pp. 113-116, Sept. 2003. [45] R. Singh and N. Bhat, “An Offset Compensation Technique for Latch Type Sense Amplifiers in High-Speed Low-Power SRAMs,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.12, No.6, pp.652-657, June 2004. [46] H. Mahmoodi-Meimand and K. Roy, “A leakage-Tolerant High Fan-In Dynamic Circuit Design Style,” Proceedings of the 2003 IEEE International SOC Conference, pp. 117-120, Sept. 2003. [47] A. Solomatnikov, D. Somasekhar, K. Roy, and C. K. Koh, “Skewed CMOS: Noise-Immune High-Performance Low-Power Static Circuit Family,” Proceedings of 2000 International Conference on Computer Design, pp. 241-246, Sept. 2000. [48] H. Mahmoodi-Meimand and K. Roy, “Diode-Footed Domino: a Leakage-Tolerant High Fan-In Dynamic Circuit Design Style,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 51, No. 3, pp. 495-503, March 2004. [49] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage Current Mechanism and Leakage Reduction Technique in Deep-Submicrometer CMOS Circuits,” Proceedings of the IEEE, vol. 91, No. 2, pp. 305-327, Feb. 2003. [50] Li Ding and P. Mazumder, “On Circuit Techniques to Improve Noise Immunity of CMOS Dynamic Logic,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 12, No. 9, pp. 910-925, Sept. 2004. [51] A. Kabbani and A.J. Al-Khalili, “A Technique for Dynamic CMOS Noise Immunity Evaluation,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 50, No. 1, pp. 74-88, Jan. 2003. [52] Wei Hwang, R.V. Joshi, and W.H. Henkels, “A 500-MHz, 32-Word x 64-Bit, Eight-Port Self-Resetting CMOS Register File,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 1, pp. 56-67, Jan. 1999. [53] Wei Hwang, G.D. Gristede, Pia Sanda, S.Y. Wang, and D.F. Heidel, “Implementation of a Self-Resetting CMOS 64-Bit Parallel Adder with Enhanced Testability,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 8, pp. 1108-1117, Aug. 1999. [54] M.H. Anis, M.W. Allam, and M.I. Elmasry, “Energy-Efficient Noise-Tolerant Dynamic Styles for Scaled-Down CMOS and MTCMOS Technologies,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 10, No. 2, pp. 71-78, Apr. 2002. [55] M.W. Allam, M.H. Anis, and M.I. Elmasry, “High-Speed Dynamic Logic Styles for Scaled-Down CMOS and MTCMOS Technologies,” Proceedings of the 2000 International Symposium on Low Power Electronics and Design (ISLPED '00), pp. 155-160, 2000. [56] S.O. Jung; S.M. Yoo; K.W. Kim, and S.M. Kang, “Skew-Tolerant High-Speed (STHS) Domino Logic,” The 2001 IEEE International Symposium on Circuits and Systems (ISCAS 2001), Vol. 4, pp. 154-157, May 2001. [57] A. Alvandpour, R. Krishnamurthy, K. Soumyanath, and S. Borkar, “A Conditional Keeper Technique for Sub-0.13um Wide Dynamic Gates,” 2001 Symposium on VLSI Circuits Digest of Technical Papers, pp. 29-30, 2001. [58] A. Alvandpour, R.K. Krishnamurthy, K. Soumyanath, and S.Y. Borkar, “A Sub-130-nm Conditional Keeper Technique,” IEEE Journal of Solid-State Circuits, Vol. 37, No. 5, pp. 633-638, May 2002. [59] A. Alvandpour, R. Krishnamurthy, K. Soumyanath, and S. Borkar, “A Low-Leakage Dynamic Multi-Ported Register File in 0.13μm CMOS,” 2001 International Symposium on Low Power Electronics and Design, pp. 68-71, Aug. 2001. [60] C.M. Lee and E.W. Szeto, “Zipper CMOS,” IEEE Circuits Devices Magazine, vol. 2, pp. 10-17, May 1986. [61] J. Pretorius, A. Shubat, and C. Salama, “Charge Redistribution and Noise Margins in Domino CMOS Logic,” IEEE Transactions on Circuits and Systems, Vol. 33, No. 8, pp. 786-793, Aug 1986. [62] G.P. D’Souza, “Dynamic Logic Circuit with Reduced Charge Leakage,” U.S. Patent 5 483 181, Jan. 1996. [63] E.B. Schorn, “NMOS Charge-Sharing Prevention Device for Dynamic Logic Circuits,” U.S. Patent 5 838 169, Nov. 1998. [64] Lei Wang and N. R. Shanbhag, “Noise-Tolerant Dynamic Circuit Design,” Proceedings of the 1999 IEEE International Symposium on Circuits and Systems (ISCAS '99), Vol. 1, pp. 549-552, May-June 1999. [65] G. Balamurugan and N.R. Shanbhag, “Energy-Efficient Dynamic Circuit Design in the Presence of Crosstalk Noise,” Proceedings of 1999 International Symposium on Low Power Electronics and Design, pp. 24-29, 1999. [66] G. Balamurugan and N. R. Shanbhag, “A Noise-Tolerant Dynamic Circuit Design Technique,” Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (CICC), pp. 425-428, May 2000. [67] F. Murabayashi, T. Yamauchi, H. Yamada, T. Nishiyama, K. Shimamura, S. Tanaka, T. Hotta, T. Shimizu, and H. Sawamoto, “2.5 V CMOS Circuit Techniques for a 200 MHz Superscalar RISC Processor,” IEEE Journal of Solid-State Circuits, Vol. 31, No. 7, pp. 972-980, July 1996. [68] J.J. Covino, “Dynamic CMOS Circuits with Noise Immunity,” U.S. Patent 5 650 733, July 1997. [69] D.A. Evans, “Noise-Tolerant Dynamic Circuits,” U.S. Patent 5 793 228, Aug. 1998. [70] S. Bobba and I.N. Hajj, “Design of Dynamic Circuits with Enhanced Noise Tolerance,” Proceedings of 20th Annual IEEE International ASIC/SOC Conference, pp. 54-58, Sept. 1999. [71] C.H. Hua, Wei Hwang, and C.K. Chen, “Noise-Tolerant XOR-Based Conditional Keeper for High Fan-in Dynamic Circuits,” presented at IEEE International Symposium on Circuits and Systems, Kobe, Japan, 2005. [72] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, “Digital Integrated Circuits,” Prentice Hall, 2nd edition. [73] J.R. Yuan, C. Svensson, and P. Larsson, “New Domino Logic Precharged by Clock and Data,” Electronics Letters, Vol. 29, No. 25, pp. 2188-2189, Dec. 1993. [74] J.S. Wang, H.Yu Li, C.C. Chen, and C.W. Yeh, “An AND-type Match-line Scheme for Energy-Efficient Content Addressable Memories,” presented at IEEE International Solid-State Circuits Conference, San Francisco, CA, 2005. [75] D.E. Comer, “Computer Networks and Internets,” Prentice Hall, International Edition.
|