跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/11 20:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭奇偉
研究生(外文):Chi-Wei Peng
論文名稱:利用電源閘與互斥或邏輯閘保持器技術之高能源效應內容可定址記憶體電路設計
論文名稱(外文):Power-Gating and XOR-Based Conditional Keepers Techniques for Energy-Efficient Content-Addressable Memory Design
指導教授:黃威黃威引用關係
指導教授(外文):Wei Hwang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:115
中文關鍵詞:內容可定址記憶體高能源效應的三元內容可定址記憶體互斥或邏輯閘保持器高雜訊免疫力的內容可定址記憶體之比對線
外文關鍵詞:Content-Addressable Memoryenergy-efficient ternary content-addressable memoryXOR-based conditional keepernoise-tolerant match-line scheme for CAM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用電源閘與互斥或邏輯閘保持器的技術,可以大量降低內容可定址記憶體之靜態與動態的功率消耗。由於CMOS製程已經進步到深次微米甚至奈米的時代,漏電流的問題也隨著臨界電壓及元件尺寸的降低而日益嚴重。一個應用電源閘技術的64行×32位元內容可定址記憶體,利用TSMC 100nm CMOS技術加以實現,由模擬結果顯示利用此技術可減少12%的動態功率及35%的靜態功率消耗且沒有造成任何搜尋時間的增加。另外,對於64行×32位元的內容可定址記憶體,應用電源閘的技術大約會增加7.8%的額外面積。

利用互斥或邏輯閘的條件式保持器的技術,本篇論文提出了一個全新抗雜訊比對線電路。利用互斥或邏輯閘的控制電路,在運算相位時即關掉保持器,藉此可以避免多餘的功率消耗及減少搜尋比對的時間。應用此技術,亦可降低比對線上之比對電路的元件尺寸,以達到減少比對線上負載的目的。一個高能源效應的256行×128位元三元內容可定址記憶體亦被提出,利用TSMC 0.13μm CMOS 技術來實現電路設計與佈局。根據模擬結果顯示,此新的三元內容可定址記憶體可以減少37.8%的搜尋比對時間及15.6%的動態功率消耗。
The low-power content-addressable memories (CAMs) using power-gating and XOR-based conditional keepers techniques are realized in this thesis. As the technology scale down to deep-submicron and nano-scale eras, the leakage current becomes more serious due to lower threshold voltage and smaller size of transistor devices. Applying power-gating techniques to 64-word x 32-bit CAM is implemented in TSMC 100nm CMOS technology. According to simulation results, the proposed CAM achieves 12% dynamic power reduction and 35% static power consumption and it doesn’t cause any search time overhead. However, for 64-word x 32-bit CAM array, 7.8% area overhead is caused by power-gating devices.
A novel noise-tolerant match-line scheme which applies the XOR-based conditional keeper techniques is proposed in this thesis. Based on the XOR-gate controller signal, the keeper would be turned off at the beginning of the evaluation phase. Accordingly, the proposed match-line scheme not only saves search power but also reduces the search time. In addition, if the XOR-based conditional keepers are applied, the smaller size of comparison circuit would be required to reduce the match-line loading at the same search time criteria. A 256-word x 128-bit energy-efficient ternary CAM is also proposed and simulations and layout are implemented in TSMC 0.13μm CMOS technology. Simulation results show that 37.8% search time reduction and 15.6% dynamic power saving are achieved by proposed ternary CAM.
[1] M. Kobayashi, T. Murase, and A. Kuriyama, “A Longest Prefix Match Search Engine for Multi-Gigabit IP Processing,” IEEE International Conference on Communications, Vol. 3, pp. 1360-1364, June 2000
[2] R. Panigrahy and S. Sharma, “Sorting and Searching Using Ternary CAMs,” IEEE Micro, Vol. 22, No. 1, pp. 58-64, Jan.-Feb. 2002.
[3] L. Zhiyong, J. Wu, and Ke Xu, “A TCAM-Based IP Lookup Scheme for Multi-Nexthop Routing,” International Conference on Computer Networks and Mobile Computing (ICCNMC 2003), pp. 128-135, Oct. 2003.
[4] H. Liu, “Efficient Mapping of Range Classifier into Ternary-CAM,” Proceedings of 10th Symposium on High Performance Interconnects, pp. 95-100, Aug. 2002.
[5] S. Hanzawa, T. Sakata, K. Kajigaya, R. Takemura, and T. Kawahara, “A Large-Scale and Low-Power CAM Architecture Featuring a One-Hot-Spot Block Code for IP-Address Lookup in a Network Router,” International Journal of Solid-State Circuits, Vol. 40, No. 4, April 2005.
[6] B. Gamache, Z. Pfeffer, and S. P. Khatri, “A fast ternary CAM design for IP networking applications,” Proceedings of The 12th International Conference on Computer Communications and Networks (ICCCN 2003), pp. 434-439, Oct. 2003.
[7] D.E. Taylor, J.S. Turner, J.W. Lockwood, T.S. Sproull, and D.B. Parlour, “Scalable IP Lookup for Internet Routers,” IEEE Journal on Selected Areas in Communications, Vol. 21, No. 4, pp. 522-534, May 2003.
[8] Http://www-device.eecs.berkeley.edu: BSIM 100nm and 70nm predictive technology process files.
[9] International Technology Roadmap for Semiconductors 2001 edition, Semiconductor Industry Association, http://public.itrs.net.
[10] F. Shafai, K.J. Schultz, G.F.R. Gibson, A.G. Bluschke, D.E. Somppi, “Fully Parallel 30-MHz, 2.5-Mb CAM,” IEEE Journal of Solid-State Circuits, Vol. 33, No. 11, pp. 1690-1696, Nov. 1998.
[11] P.F. Lin and J.B. Kuo, “1-V 128-kb Four-Way Set-Associative CMOS Cache Memory Using Wordline-Oriented Tag-Compare (WLOTC) Structure with the Content Addressable-Memory (CAM) 10-transistor Tag Cell,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 4, pp.666-675, April 2001.
[12] H. Miyatake and M. Tanaka and Y. Mori, “A Design for High-Speed Low-Power CMOS Fully Parallel Content-Addressable Memory Macros,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 6, pp.956-968, June 2001.
[13] I. Arsovski and A. Sheikholeslami, “A Mismatch-Dependent Power Allocation Technique for Match-Line Sensing in Content-Addressable Memories,” IEEE Journal of Solid-State Circuits, Vol. 38, No. 11, Nov. 2003.
[14] I. Arsovski, T. Chandler and A. Sheikholeslami, “A Ternary Content-Addressable Memory (TCAM) Based on 4T Static Storage and Including a Current-Race Sensing Scheme,” IEEE Journal of Solid-State Circuits, Vol. 38, No. 1, pp.155-158, Jan. 2003.
[15] A. Roth, D. Foss, R. McKenzie and D. Perry, “Advanced Ternary CAM Circuits on 0.13μm Logic Process Technology,” Proceedings of the IEEE 2004 Custom Integrated Circuits Conference, pp. 465-468, Oct. 2004.
[16] G. Kasai, Y. Takarabe, K. Furumi and M. Yoneda, “200MHz/200MSPS 3.2W at 1.5V Vdd, 9.4Mbits ternary CAM with New Charge Injection Match Detect Circuits and Bank Selection Scheme,” Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, pp. 387-390, Sept. 2003.
[17] H. Noda, K. Inoue, H.J. Mattausch, T. Koide, K. Arimoto, “A Cost-Efficient Dynamic Ternary CAM in 130 nm CMOS Technology with Planar Complementary Capacitors and TSR Architecture,” Symposium on VLSI Circuits Digest of Technical Papers. pp.83-84, June 2003.
[18] V. Lines, A. Ahmed, P. Ma, S. Ma, R. McKenzie, H.S. Kim and C. Mar, “66 MHz 2.3 M Ternary Dynamic Content Addressable Memory,” Records of the 2000 IEEE International Workshop on Memory Technology Design and Testing, pp.101-105, Aug. 2000.
[19] J.G. Delgado-Frias, A. Yu and J. Nyathi, “A Dynamic Content Addressable Memory Using a 4-transistor Cell,” Third International Workshop on Design of Mixed-Mode Integrated Circuits and Applications, pp.110-113, July 1999.
[20] H. Noda, K. Inoue, M. Kuroiwa, F. Igaue, K. Yamamoto, H.J. Mattausch, T. Koide, A. Amo, A. Hachisuka, S. Soeda, I. Hayashi, F. Morishita, K. Dosaka, K. Arimoto, K. Fujishima, K. Anami, T. Yoshihara, “A Cost-Efficient High-Performance Dynamic TCAM with Pipelined Hierarchical Searching and Shift Redundancy Architecture,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 1, pp. 245-253, Jan. 2005.
[21] D. A. Patterson and J. L. Hennessy, “Computer Organization and Design,” Morgan Kaufmann, 2nd edition.
[22] J. L. Hennessy and D. A. Patterson, “Computer Architecture,” Morgan Kaufmann, 3rd edition.
[23] Http://www.commsdesign.com/main/1999/11/9911feat3.htm:Using Content Addressable Memory for Networking Applications
[24] Http://www.eecg.toronto.edu/~pagiamt/: Content-Addressable Memory (CAM) Primer.
[25] N. Mohan and M. Sachdev, “Low Power Dual Matchline Ternary Content Addressable Memory,” Proceedings of the 2004 International Symposium on Circuits and Systems (ISCAS '04), Vol. 2, pp.633-636, May 2004.
[26] C.A. Zukowski and S.Y. Wang, “Use of Selective Precharge for Low-Power on the Match Lines of Content-Addressable Memories,” Proceedings of 1997 International Workshop on Memory Technology, Design and Testing, pp. 64-68, Aug. 1997.
[27] K. Pagiamtzis and A. Sheikholeslami, “Pipelined Match-lines and Hierarchical Search-Lines for Low-Power Content-Addressable Memories,” Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, pp. 383-386, Sept. 2003.
[28] N. Mohan and M. Sachdev, “A Static Power Reduction Technique for Ternary Content Addressable Memories,” Canadian Conference on Electrical and Computer Engineering, Vol.2, pp.711-714, May 2004.
[29] C.S. Lin, J.C. Chang, and B.D. Liu, “A Low-Power Precomputation-Based Fully Parallel Content-Addressable Memory,” IEEE Journal of Solid-State Circuits, Vol. 38, No. 4, pp.654-662, April 2003.
[30] K. Pagiamtzis and A. Sheikholeslami, “A Low-Power Content-Addressable Memory (CAM) Using Pipelined Hierarchical Search Scheme,” IEEE Journal of Solid-State Circuits, Vol. 39, No. 9, pp.1512-1519, Sept. 2004.
[31] K.H. Cheng, C.H. Wei and S.Y. Jiang, “Static Divided Word Matching Line for Low-Power Content Addressable Memory Design,” Proceedings of the 2004 International Symposium on Circuits and Systems (ISCAS’04), Vol. 2, pp. 629-632, May 2004.
[32] S. Choi, K. Sohn, and H.J. Yoo, “A 0.7-fJ/bit/search 2.2-ns Search Yime Hybrid-Type TCAM Architecture,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 1, pp.254-260, Jan. 2005.
[33] J. Kao and A. Chandrakasan, “Dual-Threshold Voltage Techniques for Low-Power Digital Circuits,” IEEE Journal of Solid-State Circuits, Vol. 35, No. 7, pp. 1009-1018, July 2000.
[34] C.H. Hus, “Low Power Multi-Port Register File Design for Digital Sognal Processor,” Master thesis, National Chiao-Tung University, June 2003.
[35] H. Qin, Y. Cao, D. Markovic, A. Vladimirescu, and J. Rabaey, “SRAM Leakage Suppression by Minimizing Standby Supply Voltage,” Proceedings of 5th International Symposium on Quality Electronic Design, pp.55-60, 2004.
[36] T. Kawahara, M. Horiguchi, Y. Kawajiri, G. Kitsukawa, T. Kure, and M. Aoki, “Subthreshold Current Reduction for Decoded-Driver by Self-Reverse Biasing,” IEEE Journal of Solid-State Circuits, Vol. 28, No. 11, pp. 1136-1144, Nov. 1993.
[37] Z. Chen, M. Johnson, L. Wei, and K. Roy, “Estimation of Standby Leakage Power in CMOS Circuits Considering Accurate Modeling of Transistors Stacks,” International Symposium on Low Power Electronics and Design, pp. 239-244, 1998.
[38] A. Agarwal, and Kaushik Roy, “A Noise Tolerant Cache Design to Reduce Gate and Sub-threshold Leakage in the Nanometer Regime,” International Symposium on Low Power Electronics and Design, pp. 18-21, Aug. 2003.
[39] E. Seevinck, F. J. List, and J. Lohstroh, “Static-Noise Margin Analysis of MOS SRAM Cells,” IEEE Journal of Solid-State Circuits, Vol. 22, No.5, pp. 748-754, Oct. 1987.
[40] T.S. Cheng, “Dynamic Body-Biasing and Power-Gating Techniques for Low Power Design,” Master thesis, National Chiao-Tung University, June 2004.
[41] A. Agarwal, H. Li, and K. Roy, “A Single-Vt Low-Leakage Gated-Ground Cache for Deep Submicron,” IEEE Journal of Solid-State Circuits, Vol. 38, No.2, pp. 319-328, Feb. 2003.
[42] K. Kanda, H. Sadaaki, and T. Sakurai, “90% Write Power-Saving SRAM Using Sense-Amplifying Memory Cell,” IEEE Journal of Solid-State Circuits, Vol. 39, No. 6, pp. 927-933, June 2004.
[43] H.C. Chow and S.H. Chang, “High Performance Sense Amplifier Circuit for Low Power SRAM Applications,” Proceedings of the 2004 International Symposium on Circuits and Systems (ISCAS '04), Vol.2, pp. II - 741-4, May 2004.
[44] M. Sinha, S. Hsu, A. Alvandpour, W. Burleson, R. Krishnamurthy, and S. Borkar, “High-Performance and Low-Voltage Sense-Amplifier Techniques for Sub-90nm SRAM,” Proceedings of 2003 IEEE International [Systems-on-Chip] SOC Conference, pp. 113-116, Sept. 2003.
[45] R. Singh and N. Bhat, “An Offset Compensation Technique for Latch Type Sense Amplifiers in High-Speed Low-Power SRAMs,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.12, No.6, pp.652-657, June 2004.
[46] H. Mahmoodi-Meimand and K. Roy, “A leakage-Tolerant High Fan-In Dynamic Circuit Design Style,” Proceedings of the 2003 IEEE International SOC Conference, pp. 117-120, Sept. 2003.
[47] A. Solomatnikov, D. Somasekhar, K. Roy, and C. K. Koh, “Skewed CMOS: Noise-Immune High-Performance Low-Power Static Circuit Family,” Proceedings of 2000 International Conference on Computer Design, pp. 241-246, Sept. 2000.
[48] H. Mahmoodi-Meimand and K. Roy, “Diode-Footed Domino: a Leakage-Tolerant High Fan-In Dynamic Circuit Design Style,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 51, No. 3, pp. 495-503, March 2004.
[49] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage Current Mechanism and Leakage Reduction Technique in Deep-Submicrometer CMOS Circuits,” Proceedings of the IEEE, vol. 91, No. 2, pp. 305-327, Feb. 2003.
[50] Li Ding and P. Mazumder, “On Circuit Techniques to Improve Noise Immunity of CMOS Dynamic Logic,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 12, No. 9, pp. 910-925, Sept. 2004.
[51] A. Kabbani and A.J. Al-Khalili, “A Technique for Dynamic CMOS Noise Immunity Evaluation,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 50, No. 1, pp. 74-88, Jan. 2003.
[52] Wei Hwang, R.V. Joshi, and W.H. Henkels, “A 500-MHz, 32-Word x 64-Bit, Eight-Port Self-Resetting CMOS Register File,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 1, pp. 56-67, Jan. 1999.
[53] Wei Hwang, G.D. Gristede, Pia Sanda, S.Y. Wang, and D.F. Heidel, “Implementation of a Self-Resetting CMOS 64-Bit Parallel Adder with Enhanced Testability,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 8, pp. 1108-1117, Aug. 1999.
[54] M.H. Anis, M.W. Allam, and M.I. Elmasry, “Energy-Efficient Noise-Tolerant Dynamic Styles for Scaled-Down CMOS and MTCMOS Technologies,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 10, No. 2, pp. 71-78, Apr. 2002.
[55] M.W. Allam, M.H. Anis, and M.I. Elmasry, “High-Speed Dynamic Logic Styles for Scaled-Down CMOS and MTCMOS Technologies,” Proceedings of the 2000 International Symposium on Low Power Electronics and Design (ISLPED '00), pp. 155-160, 2000.
[56] S.O. Jung; S.M. Yoo; K.W. Kim, and S.M. Kang, “Skew-Tolerant High-Speed (STHS) Domino Logic,” The 2001 IEEE International Symposium on Circuits and Systems (ISCAS 2001), Vol. 4, pp. 154-157, May 2001.
[57] A. Alvandpour, R. Krishnamurthy, K. Soumyanath, and S. Borkar, “A Conditional Keeper Technique for Sub-0.13um Wide Dynamic Gates,” 2001 Symposium on VLSI Circuits Digest of Technical Papers, pp. 29-30, 2001.
[58] A. Alvandpour, R.K. Krishnamurthy, K. Soumyanath, and S.Y. Borkar, “A Sub-130-nm Conditional Keeper Technique,” IEEE Journal of Solid-State Circuits, Vol. 37, No. 5, pp. 633-638, May 2002.
[59] A. Alvandpour, R. Krishnamurthy, K. Soumyanath, and S. Borkar, “A Low-Leakage Dynamic Multi-Ported Register File in 0.13μm CMOS,” 2001 International Symposium on Low Power Electronics and Design, pp. 68-71, Aug. 2001.
[60] C.M. Lee and E.W. Szeto, “Zipper CMOS,” IEEE Circuits Devices Magazine, vol. 2, pp. 10-17, May 1986.
[61] J. Pretorius, A. Shubat, and C. Salama, “Charge Redistribution and Noise Margins in Domino CMOS Logic,” IEEE Transactions on Circuits and Systems, Vol. 33, No. 8, pp. 786-793, Aug 1986.
[62] G.P. D’Souza, “Dynamic Logic Circuit with Reduced Charge Leakage,” U.S. Patent 5 483 181, Jan. 1996.
[63] E.B. Schorn, “NMOS Charge-Sharing Prevention Device for Dynamic Logic Circuits,” U.S. Patent 5 838 169, Nov. 1998.
[64] Lei Wang and N. R. Shanbhag, “Noise-Tolerant Dynamic Circuit Design,” Proceedings of the 1999 IEEE International Symposium on Circuits and Systems (ISCAS '99), Vol. 1, pp. 549-552, May-June 1999.
[65] G. Balamurugan and N.R. Shanbhag, “Energy-Efficient Dynamic Circuit Design in the Presence of Crosstalk Noise,” Proceedings of 1999 International Symposium on Low Power Electronics and Design, pp. 24-29, 1999.
[66] G. Balamurugan and N. R. Shanbhag, “A Noise-Tolerant Dynamic Circuit Design Technique,” Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (CICC), pp. 425-428, May 2000.
[67] F. Murabayashi, T. Yamauchi, H. Yamada, T. Nishiyama, K. Shimamura, S. Tanaka, T. Hotta, T. Shimizu, and H. Sawamoto, “2.5 V CMOS Circuit Techniques for a 200 MHz Superscalar RISC Processor,” IEEE Journal of Solid-State Circuits, Vol. 31, No. 7, pp. 972-980, July 1996.
[68] J.J. Covino, “Dynamic CMOS Circuits with Noise Immunity,” U.S. Patent 5 650 733, July 1997.
[69] D.A. Evans, “Noise-Tolerant Dynamic Circuits,” U.S. Patent 5 793 228, Aug. 1998.
[70] S. Bobba and I.N. Hajj, “Design of Dynamic Circuits with Enhanced Noise Tolerance,” Proceedings of 20th Annual IEEE International ASIC/SOC Conference, pp. 54-58, Sept. 1999.
[71] C.H. Hua, Wei Hwang, and C.K. Chen, “Noise-Tolerant XOR-Based Conditional Keeper for High Fan-in Dynamic Circuits,” presented at IEEE International Symposium on Circuits and Systems, Kobe, Japan, 2005.
[72] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, “Digital Integrated Circuits,” Prentice Hall, 2nd edition.
[73] J.R. Yuan, C. Svensson, and P. Larsson, “New Domino Logic Precharged by Clock and Data,” Electronics Letters, Vol. 29, No. 25, pp. 2188-2189, Dec. 1993.
[74] J.S. Wang, H.Yu Li, C.C. Chen, and C.W. Yeh, “An AND-type Match-line Scheme for Energy-Efficient Content Addressable Memories,” presented at IEEE International Solid-State Circuits Conference, San Francisco, CA, 2005.
[75] D.E. Comer, “Computer Networks and Internets,” Prentice Hall, International Edition.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top