跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 03:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊道諺
研究生(外文):Dao-Yen Yang
論文名稱:射頻金氧半場效電晶體於熱載子效應及氧化層崩潰時之特性化及模型化分析
論文名稱(外文):Characterization and Modeling of RF MOSFETs under
指導教授:張俊彥
指導教授(外文):Chun-Yen Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:81
中文關鍵詞:射頻金氧半場效電晶體熱載子效應氧化層崩潰線性度功率閘極散彈雜訊小訊號模型
外文關鍵詞:RF MOSFETshot carrier effectoxide breakdownlinearitypowergate shot noisesmall-signal modeling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著生活水準提升,無線通訊 ( wireless communication) 市場快速成長,無論是學術界或是工業界皆無不極力地發展無線通訊這高科技 o 而微波元件則是通訊系統中最重要的骨架。又由於以矽為基底的金氧半場效電晶體已經成為射頻元件的主流,所以射頻金氧半場效電晶體的可靠度分析亦變得愈益重要。
本篇論文之重點即是在研究以矽為基底的金氧半場效電晶體受到熱載子效應以及氧化層崩潰時的特性分析,此外我們也提出受到熱載子效應及氧化層崩潰時的金氧半場效電晶體小訊號模型並且討論個別小訊號參數的變化情形。
首先受到熱載子效應後的金氧半場效電晶體其高頻雜訊,功率特性以及截止頻率受到很嚴重的破壞。這主要是因為金氧半場效電晶體的互導下降之故。另外我們可以藉著固定汲極電流來減緩熱載子效應對於金氧半場效電晶體的影響。這可以由金氧半場效電晶體在受到熱載子效應後其臨界電壓,次臨界擺幅,電子遷移率的變化來解釋。
另一方面,由於氧化層在崩潰後會產生一個漏電路徑,所以輸入端的阻抗以及反射係數會有很明顯的變化。值得注意的是金氧半場效電晶體在氧化層崩潰後會在氧化層區產生額外的散粒雜訊, 因此其最小雜訊值會劇烈地增加。
最後,透過小訊號模型的分析,我們發現金氧半場效電晶體的互導,汲極到源極的電阻以及閘極到源極的電容受到熱載子效應以及氧化層崩潰的影響較大。另外我們也確認了在氧化層崩潰後主要的漏電路徑是產生在閘極與源極或通道的重疊區域。
In recent years, with the improvement of living standard, the development of wireless communication has become the most important technology, not only in academic circles but also in the industries. Microwave transistors are the backbone of these modern wireless communication systems. Since the Si-based MOSFETs (metal-oxide-semiconductor field-effect transistors) have become the mainstream of RF transistors in recent years, the reliability of RF MOSFETs is more and more important.
The purpose of this thesis is to investigate the characteristics of RF MOSFETs under hot carrier stress and oxide breakdown. In addition, we proposed a small-signal model individually after hot carrier (HC) stress and oxide breakdown (OBD) and discuss the variations of each small-signal parameter.
Firstly, we found that the degradations of cut-off frequency, noise and power characteristics are very obvious after HC stress. It can be explained by the decrease of the transconductance. In addition, the degradation of linearity can be softened by biasing the transistor at constant drain currents. This experimental observation can be explained by the change of threshold voltage, transconductance, subthreshold swing, and mobility under HC stress.
Secondly, since a new leakage path is generated in the gate oxide after oxide breakdown, the input impedance and optimized input reflection coefficient suffer degradations. It is worthwhile to notice that the minimum noise figure increases dramatically after hard oxide breakdown (HBD). It can be explained by the additional shot noise source in gate oxide after HBD.
Finally, from the small-signal model, the transconductance (gm0), drain-to-source resistance (Rds), and gate-to-source capacitance (Cgs) suffer more degradation after HC stress and oxide breakdown. We also confirm that the main leakage path locates at the gate and source/channel overlap region.
[1] F. Schwierz, Microwave Transistors: State of the Art in 1980s, 1990s, and 2000s. A Compilation of 100 Top References, TU Ilmenau 2002.

[2] F. Schwierz and J.J. Liou, Semiconductor Devices for Wireless Communications and High-Speed Internet, Proc. SSGRR-2000, pp. 331.1-10, 2000.

[3] F. Schwierz and J.J. Liou, Semiconductor Devices for RF Applications: “Evolution and Current Status”, Microelectron. Reliab, pp. 145-168, 2001.

[4] Pierre H.Woerlee, Mathijs J. Knitel, “RF CMOS Performance Trends,” IEEE Trans. Electron Devices, Vol 8, pp. 1778-1782,2001.

[5] E.Morifujiet al, “Future Perspective and Scaling Down Roadmap of RF CMOS”, Symposium of VLSI Circuits, pp. 165-166, 1999.

[6] Liou, J.J.; Schwierz, F, “RF MOSFET: Recent Advance and Future Trends” Electron Devices and Solid-State Circuits, pp. 185 – 192, 2003.

[7] H. Hara, Y. Okamoto and H. Ohnuma, “A New Instability in MOS Transistors Caused by Hot Electron and Hole Injection from Drain Avalanche Plasma into Gate Oxide,” Japanese Journal of Applied Physics, Vol. 9, pp. 1103-1112, 1970.

[8] S. A. Abbas and R. C. Dockerty; “Hot-carriers instability in IGFET’s” Applied Physics Letter, Vol. 27, NO. 3, pp. 147-148, 1975.

[9] T.H. Ning, C. M. Osburn and H. N. Yu “Effect of Electron Trapping on IGFET Characteristics” Journal of Electronic Materials, Vol. 6, NO. 2, pp: 65-76, 1976.

[10] Qiang Li, Yuan Chen, “RF Circuit Performance Degradation Due to Soft Breakdown and Hot-Carrier Effect in Deep-Submicrometer CMOS Technology” IEEE Transcations on Microwave Theory and Techniques, Vol. 49, NO. 9, pp. 1546-1551, 2001.

[11] S. Tam, C Hu“Luck-Electron Model of Channel Hot Electrons Injection in MOSFETs IEEE Transactions on Electron Device, Vol. 31, NO. 9, pp. 1116-1125, 1984.

[12] E. Takeda, Y. Nakagome, H. Kumes,“A New Hot carrier Injection a Device Degradation in Submicron MOSFETs”IEE Proceedings, Vol. 130, NO.3, pp.144-149,1983.

[13] Taur Ning, “Fundamentals of Modern VLSI Devices” CAMBERIDGE, 1998, chapter 3.

[14] W.L. Ng and N. Toledo, “RF HCI testing methodology and lifetime model establishment,” Reliability Physics Symposium Proceedings (IRPS), pp.1-3, 2004.

[15] Y. T. Yeow, C.H. Ling, “ Observation of MOSFET degradation due to electrical stressing through gate-to-source and gate-to-drain capacitance measurement,” IEEE Electron Device Letters, Vol.12, pp366-369, 1991.

[16] C. Y. Chang and S. M. Sze, “ULSI Devices,” Wiley Interscience, 2000. Chap.6.

[17] R. Van Langevelde and L. F. Tiemeijer, R. J. Havens, M. J. Kniyel, R. F. Roes, P. H. Woerlee, and D. B. Klassen, “Rf distortion in deep-submicron CMOS technologies,” IEDM Tech.Dig., p.807-811, 2004.

[18] K. Sanghoon, C. Byounggi, K. Bumman, “Linearity analysis of CMOS for RF application,” IEEE Transactions on Microwave Theory Tech., vol. 51, no. 3, pp.972 – 977, 2003.

[19] S.L. Garverick, and C.G. Sodini, “A simple model for scaled MOS transistors that includes field-dependent mobility,” IEEE J. Solid-State Circuits, vol. 22, no. 1, pp. 111-114, 1987.

[20] B. Toole, C. Plett, and M. Cloutier, “RF circuit implications of moderate inversion enhanced linear region in MOSFETs,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, NO. 2, pp. 319 – 328, 2004.

[21] Saman Asgaran, M. Jamal Deen, Chih-Hung Chen, “Analytical modeling of MOSFETs channel noise and noise parameters,” IEEE Trans. Electron Devices, Vol.51, pp. 2109-2114, 2004.

[22] C. Fiegna, “Analysis of gate shot noise in MOSFETs with ultrathin gate oxides,” IEEE Electron Device Lett., vol. 24, NO. 2, pp. 108–110, 2003.
.

[23] G. Dambrine, A. Cappy, F. Heriodore, and E. Playez, "A new method for determining the FET small-signal equivalent circuit " IEEE Trans. Microwave lkeory Tech., Vol 36, pp. 1151-1159. 1988.

[24] S. Lee et al., “A novel approach to extracting small-signal model parameters of silicon MOSFET’s,” IEEE Microwave Guided Wave Lett., Vol. 7, pp. 75-77, 1997.

[25] S. Lee et al., “A small-signal RF model and its parameter extraction for substrate effects in RF MOSFET’s,” IEEE Trans. Electron Devices, vol. 48, pp. 1374–1379, 2001.

[26] S. C. Wang, G. W. Huang, “A Practical Method to Extract Extrinsic Parameters for the Silicon MOSFET Small-Signal Model” 2004 Workshop on Compact Modeling, 2004.

[27] Y. T. Yew, C. H. Ling, “Observation of MOSFET Degradation Due to Electrical Stressing Through Gate-to-Drain Capacitance Measurement,” IEEE Electron Device Letters, Vol. 12, NO.7, pp.366-368, 1991

[28] C. H. Ling, “A study of Hot Carrier Degradation in NMOSFET’s by Gate Capacitance and charge pumping method,” IEEE Transaction on Electron Device, Vol. 42, NO. 7, pp. 1321-1328, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top