跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/16 05:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施雲懷
研究生(外文):Yuan-Hwai Shih
論文名稱:針對IEEE802.11無線區域網路的二段式通話允諾控制演算法
論文名稱(外文):A Two-tier Call Admission Control Algorithm in IEEE 802.11 WLAN
指導教授:黃經堯黃經堯引用關係李大嵩李大嵩引用關係
指導教授(外文):Ching-Yao HuangTa-Sung Lee
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:51
中文關鍵詞:無線區域網路通話允諾控制
外文關鍵詞:IEEE802.11WLANCallAdmissionControl
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:1
近年來,使用無線寬頻的人口與日俱增。因此,使各種資料傳輸(例:語音、數據或多媒體)在隨時隨地能維持一定的服務品質,變得更為重要。為因應這項需求,整合各種不同的無線通訊系統逐漸演變成現今科技發展的潮流。在眾多整合技術中,IEEE 802.11無線區域網路被廣泛地採用為整合的系統之一,它運用正交分頻多工的調變方法,因而提供了很高的傳輸速率(6Mbps~54Mbps)。然而,IEEE 802.11無線區域網路能涵蓋的範圍非常有限,所以只設置在一些使用者較眾多的地方,例如辦公室、校園或機場;除此之外,IEEE 802.11無線區域網路存在最另人詬病的一點-當使用者稍有一點移動速率,系統的傳輸效能往往也跟著大幅地降低。在本論文中,吾人對IEEE 802.11無線區域網路的實體層及媒介存取層進行分析,並檢視IEEE 802.11無線區域網的每一個模式,在不同的頻道下所能達到的最大傳輸流量。最後,吾人亦利用馬可夫鍊導出連線速率自動調節演算法的數學模型,並結合了所有分析而得的結果,提出了一套「針對IEEE 802.11無線區域網路的二段式通話允諾控制演算法」。此演算法不僅能提高IEEE 802.11無線區域網路系統的整體傳輸流量,更能使每一個在此系統中的使用者,均能得到一定的服務品質。
As the number of wireless subscribers rapidly increases, the demands for guaranteeing the quality of services for all types of traffic (e.g. voice, data, and multimedia) anytime and anywhere become more critical. Therefore, the integration of multiple communication systems has passed into the developing trend of today’s technology. IEEE 802.11a/WLAN is one of the major wireless networks being widely adopted to be part of the integration. It achieves high data rates ranging from 6Mbps to 54Mbps by using orthogonal frequency division multiplexing (OFDM). However, the coverage of 802.11a is basically from 30m to 50m only. Thus WLAN will be set up only at hotspots such as offices, campuses and airports. Besides, IEEE 802.11a supports poor mobility thus the performance declines while the movement arises. In this thesis, the first tier call admission control (CAC) analyzes the performance of the IEEE 802.11a physical layer (PHY) under various channel conditions and determines if the station may request for the association. Besides, analytical mathematical models of link adaptation techniques, Auto Rate Fallback (ARF) and its extension, Adaptive ARF (AARF), are derived from the proposed Markov chains; and it provides essential information when designing the Buffer Time (BT) based call admission control algorithm in the second tier. In the end, the first and the second tier CAC algorithms are combined and an idea called “A Two-tier Call Admission Control Algorithm” is given to improve the overall system throughput and guarantee the quality of service of every single user in the WLAN system.
[1] IEEE WG 802.11, “Part11: Wireless LAN Medium Access Control (MAC) and Physical layer (PHY) specifications”, ISO/IEC 8802-11:1999(E), IEEE Std 802.11, 1999 Edition.
[2] IEEE 802.11a, “Part 11: Wirelss LAN, medium access control (MAC) and physical layer (PHY) specifications: high-speed physical layer in the 5GHz band”, supplement to IEEE 802.11 standard, Sept. 1999.
[3] B. Hirosaki, “An orthogonal multiplexed QAM system using the discrete Fourier transform”, IEEE Trans. on Comm., vol. 29, no. 7, pp. 982-989, July 1981.
[4] G. Bianchi, "IEEE 802.11-Saturation Throughput Analysis", IEEE Communications Letters, vol. 2, pp. 318-320, Dec. 1998.
[5] Z. Hadzi-Velkov and B. Spasenovski, “Saturation throughput-delay analysis of IEEE 802.11 DCF in fading channel”, Proc. ICC 2003, pp. 121-126, May 2003.
[6] P. Chatzimisios, V. Vitsas and A. C. Boucouvalas, "Throughput and Delay Analysis of IEEE 802.11 Protocol", Proc. 5th IEEE Workshop Networked Appliances, pp. 168-174, Oct. 2003.
[7] Y. Xiao and J. Rosdahl, “Throughput and Delay Limits of IEEE 802.11”, IEEE Communications Letters, vol. 6, pp. 355–357, Aug. 2002.
[8] K. K. Leung and Li-Chun Wang, “Integrated link adaptation and power control for wireless IP networks”, Proc. IEEE VTC 2000, vol. 3, pp. 2086-2092, May 2000.
[9] D. Qiao and S. Choi, "Goodput Enhancement of IEEE 802.11a Wireless LAN via Link Adaptation", in Proc. IEEE ICC'2001, Helsinki, Finland, June 11~14, 2001.
[10] J. Jelitto, A. Noll Barreto and Hong Linh Truong, “Power and Rate Adaptation in IEEE 802.11a Wireless LANs”, Proc. IEEE VTC 2003, vol. 1, pp. 413-417, April, 2003.
[11] Javier del Prado and Sunghyun Choi, “Link Adaptation Strategy for IEEE 802.11 WLAN via Received Signal Strength Measurement,” in Proc. IEEE ICC’03, Anchorage, Alaska, USA, May 2003.
[12] A. Kamerman and L. Monteban, WaveLAN-II: A High-performance wireless LAN for the unlicensed band. Bell Lab Technical Journal, pages 118-133, Summer 1997.
[13] D. Pong and T. Moors: "Call Admission Control for IEEE 802.11 Contention Access Mechanism", Proc. Globecom 2003, pp. 174-8, Dec. 1-5, 2003.
[14] Zhen-ning Kong, Danny H.K.Tsang, and Brahim Bensaou, "Measurement-assisted model-based call admission control for IEEE 802.11e WLAN contention-based channel access," in Proc. 13th IEEE Workshop on Local and Metropolitan Area Networks, LANMAN 2004, Apr. 2004, pp. 55-60.
[15] Y.L.Kuo, C.H.Lu, E.H.K.Wu, G.H.Chen, "An Admission Control Strategy for Differentiated Services in IEEE 802.11", Proc. IEEE GLOBECOM, San Francisco, CA, 2003/12.
[16] Wing Fai Fan, Deyun Gao, Danny H.K. Tsang, Brahim Bensaou, "Admission Control for Variable Bit Rate traffic in IEEE 802.11e WLANs", Proc. 2004 Joint Conference of the 10th Asia-Pacific Conference on Communications and the 5th International Symposium on Multi-Dimensional Mobile Communications (APCC/MDMC'04), Beijing, China, August 29-September 1, 2004.
[17] IEEE 802.11g “Further higher data rate extension in the 2.4 GHz band”, IEEE Std 802.11g-2003.
[18] ETSI TR 101 683(V1.1.2): Broadband Radio Access Networks; HIPERLAN/2 System Overview.
[19] ETSI ETS 300 744: Digital Video Broadcasting (DVB-T).
[20] IEEE P802.16a/D7-2002.
[21] Y. Zhao and S.G. Häggman, “Sensitivity to Doppler shift and carrier frequency errors in OFDM systems — The consequences and solutions” in IEEE 46th Vehicular Technology Conf., Atlanta, GA, Apr. 1996, pp. 1564–1568.
[22] K. Sathananthan and C. Tellambura, “Probability of error calculation of OFDM systems with frequency offset,” IEEE Trans. Commun., vol. 49, pp. 1884-1888, Nov. 2001.
[23] Yuping Zhao and Sven-Gustav Häggman: "BER Analysis of OFDM Communication Systems with Intercarrier Interference", Proc. International Conference on Communication Technology (ICCT'98), Vol. 2. pp. S38-02-1, Beijing, China, 22-24, Oct., 1998.
[24] H. Cheon and D. Hong, “Effect of channel estimation error in OFDM based WLAN, “IEEE Commun. Lett., vol. 6, no. 5, pp. 190–192, May 2002.
[25] IEEE, “Draft supplement to part 11: wireless medium access control (MAC) and physical layer (PHY) specification: medium service (QoS),” IEEE 802.11e/D4.0, Nov. 2002.
[26] IEEE Std 802.11/D5.0, “Draft Supplement to STANDARD FOR Telecommunications and Information Exchange between Systems – LAN/MAN Specific Requirements. Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC) Enhancements for Quality of Services (QoS)”, July 2003.
[27] M. Lacage, M.H. Manshaei, T. Turletti, "IEEE 802.11 Rate Adaptation: A Practical Approach", Seventh ACM International Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems (MSWiM), Venice, Italy, October 4-6, 2004.
[28] J. A. Stankovic, M. Spuri, K. Ramamritham and G. C. Buttazzo, “Deadline Scheduling for Real-Time Systems: EDF and Related Algorithms,” Kluwer Academic Publishers, Dordrecht Norwell. 1998.
[29] Grilo A., Macedo M., and Nunes M, “A Scheduling Algorithm for QoS Support in IEEE 802.11e Networks”, IEEE Wireless Communications, pp. 36-43, June 2003.
[30] Ka Yeung, “802.11a Modeling and MAC Enhancements for High Speed Rate Adaptive Networks”, University of California, December 2002.
[31] “Radio resource management strategies (Release 5)”, 3rd Generation Partnership Project, Technical Specification Group Radio Access Network, 3GPP TR 25.922, v 5.0.0, Mar. 2002.
[32] ITU-T Rec. G.729 Annex A, “Reduced Complexity 8 kb/s CS-ACELP Speech Codec,” Nov. 1996.
[33] Video traces available at http://www.eas.asu.edu/trace
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top