跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/24 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李秋峰
論文名稱:1.8伏金氧半低雜訊放大器應用於超寬頻3.1-10.6GHZ無線接收端
論文名稱(外文):A 1.8 -V CMOS LNA applied for Ultra-Wideband 3.1 to 10.6GHZ Wireless Receivers
指導教授:荊鳳德
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:50
中文關鍵詞:超寬頻低雜訊放大器互補式金氧半
外文關鍵詞:UWBLNACMOS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本論文研製一個應用於超寬頻3.1-10.6 GHZ的低雜訊放大器是採用電感-電容階梯式做輸入匹配,而在輸出端是用L-section做匹配。本研究是以0.18微米互補式金氧半製程實現。此低雜訊放大器是以兩級放大為主架構,第一級為CS-CG 堆疊結構,是為了改善逆向隔離S12及頻率響應,第二級為Darlington pair結構,可以增加單位增益頻寬fT。為了能在所應用的頻段內達到相對的平坦增益,利用shunt peaking 的方法去實現。供應電壓VDD為1.8伏特時,整個電路功率消耗約為22mW,及包含pad的情況下整個電路大小約為1 mm2。本研究的低雜訊放大器所量測的規格,平均順向增益(S21)約為7dB,逆向隔離(S12)約為-35dB,S11約為-7dB,S22約為-8dB。而平均雜訊指數約為8dB。
A 3.1-10.6 GHZ low noise amplifier is applied for ultra-wideband, it introduces LC ladder for input matching. And L section is used for output matching. This research is fabricated in 0.18-μm CMOS process. Two amplified stages are formed for main topology in low noise amplifier. The first stage introduces CS-CG cascode configuration, it can improve the reverse isolation and frequency response. The second stage introduce Darlington pair configuration, it can boost the unity gain bandwidth. Relatively flat gain is essential over the entire desired band. The low noise amplifier introduces the shunt peaking to achieve the above purpose. The total power dissipation of the chip is about 22 mW at power supply 1.8 volt. The chip size included pad is 1 mm2. The measurement result of this study expect that the average forward S21 is 7 dB, the reverse isolation S12 is -35 dB, the magnitude of S11 is -7 dB, the magnitude of S22 is -8 dB, and the noise figure is 8 dB.
Abstract (in Chinese)…………………………………………………………………i
Abstract (in English)…………………………………………………………………ii
Acknowledgement…………………………………………………………………...iii
Contents……………………………………………………………………………...iv
Figure Captions………………………………………………………………………v
Chapter 1 Introduction
1.1 Motivation…………………………………………………………………………1
Chapter 2 Basic Concepts in RF Design
2.1 Nonlinear effect in RF circuits…………………………………………………….3
2.2 Noise……………………………………………………………………………….5
2.3 Cascaded nonlinear stages…………………………………………………………7
Chapter 3 Basic Low-Noise Amplifiers Design
3.1 General consideration in low-noise amplifiers…………………………………...12
3.2 Conventional LNA design………………………………………………………..17
Chapter 4 The Design of CMOS LNA for Ultra-wideband Wireless Receivers
4.1 Circuit topology and design flow………………………………………………...24
4.2 Layout and other consideration…………………………………………………..38
Chapter 5 Experimental Results and Discussion
5.1 Experimental Results……………………………………………………………..43
5.2 Discussion and Conclusion………………………………………………………43

References…………………………………………………………………………...48
Vita…………………………………………………………………………………...50
[1] P. Heydari, “Design Considerations for Low-Power Ultra Wideband Receivers,” IEEE Quality of Electronic Design, 2005. ISQED 2005. Sixth International Symposium on 21-23 March 2005 Page(s):668 - 673
[2] B. Razavi, RF Microelectronics, 1st ed. NJ, USA: Prentice-Hall PTR, 1998.
[3] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 1st ed. New York: Cambridge Univ. Press, 1998.
[4] B. Razavi, Design of Analog CMOS Integrated Circuits, International ed. NY: McGraw Hill Co. 2001.
[5] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, 2nd ed. NJ: Prentice-Hall, Inc. 1997.
[6] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHZ CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp; 745-759, May, 1997.
[7] S. Vishwakarma, S. Jung and Y. Joo, “Ultra Wideband CMOS Low Noise Amplifier with Active Input Matching,” IEEE Ultra Wideband Systems, 2004. Joint with Conference on Ultrawideband Systems and Technologies. Joint UWBST & IWUWBS. 2004 International Workshop on 18-21 May 2004, pp. 415-419.
[8] C-W. Kim, M-S. Kang, P. T. Anh, H-T. Kim and S-G. Lee, “An Ultra-Wideband CMOS Low Noise Amplifier for 3-5-GHZ UWB System,” IEEE J. Solid-State Circuits, vol. 40, no. 2, February, 2005.
[9] R-C. Liu, K-L. Deng, and H. Wang, “A 0.6-22-GHZ broadband CMOS distributed amplifier,” in IEEE Radio Frequency Integrated Circuits Symp. Dig. Papaers, 2003, pp. 103-106
[10] D. M. Pozar, Microwave Engineering, 2nd ed. Crawfordsville: John Wiley & Sons, Inc. 1998.
[11] P. R. Gary, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed. Crawfordsville: John Wiley & Sons, Inc. 2001.
[12] C. P. Yue, C. Ryu, J. Lau, T. H. Lee, and S. S. Wong, “A physical model for planar spiral inductors on silicon,” IEEE, Electron Devices Meeting, 1996. International 8-11 Dec. 1996 pp. 155-158.
[13] A. Bevilacqua, and A. M. Niknejad, “An Ultrawideband CMOS Low-Noise Amplifier for 3.1-10.6-GHZ Wireless Receivers,” IEEE J. Solid-State Circuits, vol.39, no. 12. December 2004.
[14] J. N. Burghartz, D. C. Edelstein, H. A. Ainspan, and K. A. Jenkins, “RF Circuit Design Aspects of Spiral Inductors on Silicon,” IEEE J. Solid-State Circuits, vol.33, no. 12. December 1998.
[15] H. Dedieu, C. Dehollain, J. Neirynck, and G. Rhodes, “A New Method for Solving Broadband Matching Problems,” IEEE Tran. Circuits and Systems, vol. 41, no. 9. September 1994.
[16] H. J. Carlin, and P. Amstutz, “On Optimum Broad-Band Matching,” IEEE Tran. Circuits and Systems, vol. 28, no. 8. May 1981.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top