跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 23:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝文芩
論文名稱:具虛擬式二極體仿視網膜處理電路之焦平面式切變運動感測器設計
論文名稱(外文):THE DESIGN OF A CMOS FOCAL-PLANE SHEAR MOTION SENSOR WITH PSEUDO-BJT-BASED RETINAL PROCESSING CIRCUITS
指導教授:吳重雨
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:66
中文關鍵詞:焦平面式切變運動感測器改良型correlation-based演算法視網膜處理電路
外文關鍵詞:focal-plane shear motion sensormodified correlation-based algorithmretinal processing circuit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:437
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主旨在闡述如何設計並實現一焦平面式切變運動感測器。此設計的運動計算方法主要採用改良型correlation-based演算法,藉以偵測各部分的運動向量,另外再採用虛擬式二極體仿視網膜處理電路對入射影像做前端處理;改良式的correlation-based演算法可使電路結構緊密且穩健度高,而虛擬式二極體仿視網膜處理電路不僅加強了電路整合性,更具有加強影像對比度、高光學動態範圍以及抗雜訊等優點。此外為達到偵測切變運動的目的,在本設計中各像素的排列方式是沿著切變運動之路徑來安排,這樣的架構有助於偵測影像是否對於我們欲偵測運動方向有選擇性的特性,進一步能測出運動速度。
此設計以0.35 um互補式金氧半電晶體技術製作,晶片總面積為2036 x 1765 um2,包括92像素,單一像素面積為52.96 x 55.07 um2,其中16%為感光二極體所佔面積。切變運動一共量測了三種速度:每秒0.06毫米、0.09毫米以及0.18毫米,計算得到的速度與實際速度之誤差皆在正負10%以內;另外也用三種以不同速度移動之圖形測試切變運動感測器,其可順利排除移動運動,驗證了本設計之切變運動方向選擇性。晶片在不照光以及3伏特電源供應下消耗功率為3mW。
本論文提出之切變運動感測器其對切變運動之偵測已得到驗證,未來除了改進單一像素中感光二極體之填充常數以及面積大小,亦將進一步與旋轉和擴張運動感測器做整合,實現三維運動之偵測。
ABSTRACT (CHINESE) i
ABSTRACT (ENGLISH) ii
ACKNOWLEDGMENTS iv
CONTENTS v
TABLE CAPTIONS vii
FIGURE CAPTIONS viii

CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND OF BIO-INSPIRED SENSORS 1
1.2 RETINAL PROCESSING CIRCUITS 4
1.3 RESEARCH MOTIVATION AND ORGANIZATION OF THIS THESIS 5
1.3.1 Research Motivation 5
1.3.2 Thesis Organization 6

CHAPTER 2 REVIEWS OF RETINAL PROCESSING CIRCUITS AND FOCAL-PLANE MOTION SENSORS 8
2.1 REVIEW OF RETINAL PROCESSING CIRCUITS 8
2.2 REVIEW OF FOCAL-PLANE MOTION SENSORS 14

CHAPTER 3 CIRCUIT DESIGN AND SIMULATION RESULTS 28
3.1 DESIGN CONSIDERATION 28
3.2 CORE CIRCUIT REALIZATION 29
3.3 MOTION COMPUTATION CIRCUIT DESIGN 36
3.4 SIMULATION RESULTS 39

CHAPTER 4 EXPERIMENTAL RESULTS 49
4.1 MEASUREMENT SETUP 49
4.2 MEASUREMENT RESULTS 50
4.3 DISCUSSIONS 59

CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 62
5.1 MAIN RESULTS OF THIS THESIS 62
5.2 FUTURE WORKS 63

REFERENCES 64
VITA 66
[1] C. Y. Wu and K.H. Huang, “A CMOS focal-plane motion sensor with BJT-based retinal smoothing network and modified correlation-based algorithm,” IEEE Sensors Journal, vol. 2, no. 6, pp. 549-558, December 2002.
[2] O. Schrey, R. Hauschild, B. J. Hosticka, U. Iurgel and M. Schwarz, “A locally adaptive CMOS image sensor with 90dB dynamic range,” ISSCC Digest of Technical Papers, pp. 310-311, 1999.
[3] K. Boahen and A. Andreou, “A contrast-sensitive retina with reciprocal synapses,” Advance in Neural Information Processing 4, J. E. Moody, ed., Morgan Kaufman, 1991.
[4] C. A. Mead, Analog VLSI and Neural Systems, MA: Addison Wesley, 1989.
[5] F. Pardo, B. Dierickx, and D. Scheffer, “CMOS foveated sensor: signal scaling and small geometry effects,” IEEE Transaction on Electron Devices, vol. 44, no. 10, October 1997.
[6] J. J. Konederink, “Optical flow, ” Vision Research, no. 26, pp. 161-180, 1986.
[7] G. A. Orban and H. –H Nagel (eds.), Artificial and Biological Vision Systems, Berlin: Springer-Verlag, 1992.
[8] K.H. Huang, L. J. Lin, and C. Y. Wu, “Analysis and design of a CMOS angular velocity- and direction-selective rotation sensor with a retinal processing circuit,” IEEE Sensors Journal, vol. 4, no. 6, pp. 845-856, December 2004.
[9] C. A. Mead, “Adaptive Retina,” Analog VLSI Implementations and Neural Systems, pp. 239-246, 1989.
[10] A. G. Andreou and K. A. Boahen, “A 48,000 pixel, 590,000 transistor silicon retina in current-mode subthresold CMOS,” in Proceedings of the 37th Midwest Symposium on Circuits and Systems, vol. 1, pp. 97-102, 1994.
[11] C. Y. Wu and H. C. Jiang, “An improved BJT-based silicon retina with tunable image smoothing capability,” IEEE Transactions on VLSI Systems, vol. 7, no. 2, pp.241-248, June 1999.
[12] C. Y. Wu, H. C. Huang, L. J. Lin, and K. H. Huang, “A new Pseudo-Bipolar-Junction-Transistor (PBJT) and its application in the design of retinal smoothing network,” in Proc. IEEE International Symposium on Circuits and Systems, vol. 4, pp. 125-128, July 2002.
[13] E. R. Fossum, “Architectures for focal-plane image processing,” Optical Engineering, vol. 28, no. 8, pp. 866–871, 1989.
[14] C. Y. Wu and C. T. Chiang, “A low-photocurrent CMOS retinal focal-plane sensor with pseudo-BJT smoothing network and adaptive current Schmitt trigger for scanner applications,” IEEE Sensors Journal, vol. 4, no. 4, pp. 510-518, August 2004.
[15] Raymond A. Serway, Physics For Scientists & Engineers with Modern Physics, Saunders College Publishing, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文