|
1. H.S. Nalwa edited, Handbook of Low and High Dielectric Constant Materials and Their Applications, Academic Press, San Diego, 1999. 2. G. Heftman, “Wireless Industry Fortunes Continue To Multiply ” Microwaves & RF, December, pp.57-58, 1997. 3. S. Smyser and J. Rebello, “Wireless Systems Market Tracker,” iSuppli corp., 2005. 4. 林韋志, “全球手機銷售狀況,” ITIS Project, IEK/ITRI, 2005.05.06 5. R.D. Richtmyer, “Dielectric Resonators,” J. Appl. Phys., Vol. 10, pp. 391-398, 1939. 6. P. Guillon, “Dielectric Resonators,” 42nd Annual Frequency Control Symposium, pp. 259-262, 1988. 7. K. Wakino, Y. Tsujimoto, K. Morimoto, and N. Ushio, “Technological Progress in Materials Application for Electronic Capacitors in Japan,” IEEE Electrical Insulation Magazine, Vol. 6(3), pp. 29-43, 1990. 8. D. Kajfez and P. Guillon edited, Dielectric Resonators, Artech House, Massachusetts, 1986. 9. M. Kawasaki, Y. Hara, Y. Yamashiki, N. Asahi, R. Nagase, T. Ueoka, M. Yoshioka, and T. Nonaka, “ Development of High-k Inorganic/Organic Composite Material for Embedded Capacitors,” Proc. 54th Electronic Components and Technology Conf., pp. 525-530, 2004. 10. J.W. Xu, M. Wong, and C.P. Wong, “ Super High Dielectric Constant Carbon Black-Filled Polymer Composites as Integral Capacitor Dielectrics,” Proc. 54th Electronic Components and Technology Conf., pp. 536-541, 2004. 11. Y. Rao and C.P. Wong, “Ultra High Dielectric Constant Epoxy Silver Composite for Embedded Capacitor Applications,” Proc. 52th Electronic Components and Technology Conf., pp. 920-924, 2002. 12. D. Majumdar, W. Borland, J. Felten, L. Delles, and M. Doyle, “New Ceramic Materials for Embedded Passives,” Proc. IPC 1st International Conf. on Embedded Passives, pp. 30-35, 2003. 13. S. Liang, “Barium Titanate/Epoxy Composite Dielectric Materials for Intrgrated Thin Film Capacitors,” Proc. 48th Electronic Components and Technology Conf., pp. 171-178, 1998. 14. B.W. Hakki and P.D. Coleman, “A dielectric resonator method of measuring inductive capacitance in the millimeter range,” IRE Trans. Microwave Theory Tech., Vol. MTT-8, pp.402-410, 1960. 15. Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric resonator method,” IEEE Trans. Microwave Theory Tech., Vol. MTT-33(7), pp. 586-592, 1985. 16. T. Nomura, J. Miura, T. Arashi, Y. Nakano, and A. Sato, “Multilayer Ceramic Capacitors-Recent Trends,” Proc. of the 10th IEEE International Symposium on Applications of Ferroelectrics, pp. 135-141, 1996. 17. C. Robert and J. Melvin edited, CRC Handbook of Chemistry and Physics 61st edn., CRC Press, Florida, 1981. 18. T. Takada, S.F. Wang, S. Yoshikawa, S.J. Jang, and R. E. Newnham, “Effect of Glass additions on BaO-TiO2-WO3 Microwave Ceramics,” J. Am. Ceram. Soc., Vol. 77(7), pp. 1909-1916, 1994. 19. T. Takada, S.F. Wang, S. Yoshikawa, S.J. Jang, and R.E. Newnham, “Effect of Glass additions on (Zr, Sn)TiO4 for Microwave Applications,” J. Am. Ceram. Soc., Vol. 77(9), pp. 2485-2488, 1994. 20. O. Dernovsek, A. Naeini, G. Preu, W. Wersing, M. Eberstein and W. A Schiller, ” LTCC glass-ceramic composites for microwave application”, J. Euro. Ceram. Soc., Vol. 21, pp. 1693-1697, 2001. 21. H.S. Nalwa, Handbook of low and high dielectric constant materials and their applications, Academic Press, San Diego, 1999. 22. W.D. Kingery, H.K. Browen and D.R. Uhlmann, Intriduction to Ceramics, 2nd Edn., Wiley, 1976. 23. K.M. Luk and K.W. Leung edited, Dielectric resonator antennas, Artech House, Massachusetts, Philadelphia, Research Studies Press, 2003. 24. W.G. Spitzer, R.C. Miller, D.A. Kleinman, and L.E. Howarth, “Far Infrared Dielectric Dispersion in BaTiO3, SrTiO3, and TiO2,” Phys. Rev., Vol. 126(5), pp. 1710-1721, 1962. 25. K. Wakino, M. Murata and H. Tamura, “Far Infrared Reflection Spectra of Ba(Zn,Ta)O3-BaZrO3 Dielectric Resonator Material,” J. Am. Ceram. Soc., Vol. 69(1), pp. 34-37, 1986. 26. W.E. Courtney, “Analysis and Evaluation of a Method of Measuring the complex Permittivity and Permeability of Microwave Insulators,” IEEE Transactions on Microwave Theory and Tech., Vol. MTT-18(8), pp. 476-485, 1970. 27. A.A. Anappara, S. Rajeshkumar, P. Mukundan, P.R.S. Warrier, S. Ghosh, and K.G.K. Warrier, “Impedance spectroscopic studies of sol–gel derived subcritically dried silica aerogels,” Acta Materialia Vol. 52(2), pp. 369-375, 2004. 28. S. Kim and J. Maier, “Partial electronic and ionic conduction in nanocrystalline ceria: role of space charge,” J. Eur. Ceram. Soc. Vol. 24(6), pp. 1919-1923, 2004. 29. Z.S. Macedo, C.R. Ferrari, and A.C. Hernandes, “Impedance spectroscopy of Bi4Ti3O12 ceramic produced by self-propagating high-temperature synthesis technique,” J. Eur. Ceram. Soc. Vol. 24(9), pp. 2567-2574, 2004. 30. V.L. Gurevich, “Dielectric loss in crystals,” Sov. Phys. Solid State, Vol. 21(11), pp.1993-1998, 1979. 31. V.L. Gurevich and A.K. Tagantsev, “Intrinsic dielectric loss in crystals: Low temperature,” Sov. Phys. JETP, Vol. 64(1), pp.142-151, 1986. 32. B.D. Silverman, “Microwave Absorption in Cubic Strontium Titanate,” Phys. Rev, Vol. 125(6), pp.1921-1930, 1962. 33. A.J. Moulson and J.M. Herbert, Electroceramics, 2nd edition, Wiley, England, 2003. 34. S.J. Fiedziuszko, I.C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S.N. Stitzer, and K. Wakino, “Dielectric Materials, Devices, and Circuits,” IEEE Trans. Microwave Theory Tech., Vol. 50(3), pp. 706-720, 2002. 35. B.D. Lee, H.R. Lee, K.H. Yoon, and Y.S. Cho, “Microwave dielectric properties of magnesium calcium titanate thin films,” Ceram. International Vol. 31, pp. 143-146, 2005. 36. Y. Higuchi and H. Tamura Wakino, “Recent progress on the dielectric properties of dielectric resonator materials with their applications from microwave to optical frequencies,” J. Eur. Ceram. Soc., Vol. 23, pp. 2683-2688, 2003. 37. S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi, “Ba(Zn1/3Ta2/3)O3 ceramic with low dielectric loss,” J. Am. Ceram. Soc., Vol. 66(6), pp. 421-423, 1983. 38. V. Tolmer and G. Desgardin, “Low-Temperature Sintering and Influence of the Process on the Dielectric Properties of Ba(Zn1/3Ta2/3)O3,” J. Am. Ceram. Soc., Vol. 80(8), pp. 1981-1991, 1997. 39. H. Tamura, T. Konoike, and K. Wakino, “Improved high-Q dielectric resonator with complex perovskite structure,” J. Am. Ceram. Soc., Vol. 67, pp. C59-C61, 1984. 40. W.S. Kim, T.H. Kim, E.S. Kim, and K.H. Yoon, “Microwave Dielectric Properties and Far Infrared Reflectivity Spectra of the (Zr0.8Sn0.2)TiO4 Ceramics with additives,” Jpn. J. Appl. Phys., Vol. 37, pp. 5367-5371, 1998. 41. I. Teoreanu, E. Andronescu, and A. Folea, “Microwave Processing of Ba2Ti9O20 Ceramic,” Ceram. International, Vol. 22, pp.305-307, 1996. 42. K. Wakino, K. Minai, and H. Tamura, “Microwave characteristics of (Zr, Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 dielectric resonator,” J. Am. Ceram. Soc., Vol. 67(4), pp. 278-281, 1984. 43. C.L. Huang, H.L. Chen, and C.C. Wu, “Improved high Q value of CaTiO3 -Ca(Mg1/3Nb2/3)O3 solid solution with near zero temperature coefficient of resonant frequency,” Mat. Res. Bull., Vol. 36, pp. 1645-1652, 2001. 44. C. Vigreux, B. Deneuve, J. El Fallah, and J.M. Haussonne, “Effects of acceptor and donor additives on the properties of MagTiO3 ceramics sintered under reducing atmosphere,” J. Eur. Ceram. Soc., Vol. 21, pp. 1681-1684, 2001. 45. H.M. O’Bryan, J. Thomson, and J.K. Plourde, “A new BaO-TiO2 compound with temperature-stable high permittivity and low microwave loss,” J. Am. Ceram. Soc., Vol. 57(10), pp. 450-453, 1974. 46. H.M. O’Bryan and J. Thomson, “Ba2Ti9O20 Phase Equilibria,” J. Am. Ceram. Soc., Vol. 66(1), pp. 66-68, 1983. 47. S. Nishigaki, S. Yano, H. Kato, T. Hirai, and T. Nonomura, “BaO-TiO2-WO3 microwave ceramics and crystalline BaWO4,” J. Am. Ceram. Soc., Vol. 71(1), pp. C11-C17, 1988. 48. D. Kolar, S. Gaberscek, B. Volavsek, H.S. Parjer, and R.S. Roth, “Synthesis and Crystal Chemistry of BaNd3Ti3O10, BaNd2Ti5O14, and Nd4Ti9O24,” J. Solid State Chem., Vol. 38, pp. 158-164, 1981. 49. S. Nishigaki, H. Kato, S. Yano, and R. Kamimura, “Microwave dielectric properties of (Ba,Sr)O-Sm2O3-TiO2 ceramics,” Am. Ceram. Soc. Bull., vol. 66, pp. 1405–1410, 1987. 50. E.S. Razgon, A.M. Gens, M.B. Varfolomeev, S.S. Korovin, and V.S. Kostomarov, “The Complex Barium and Lanthanum Titanates,” Russ. J. Inorg. Chem., Vol. 25(6), pp. 945-947, 1980. 51. E.S. Razgon, A.M. Gens, M.B. Varfolomeev, S.S. Korovin, and V.S. Kostomarov, “Some Barium Lanthanide Titanates,” Russ. J. Inorg. Chem., Vol. 25(8), pp. 1274 -1275, 1980. 52. A.M. Gens, M.B. Varfolomeev, V.S. Kostomarov, and S.S. Korovin, “Crystal electrophysical Properties of Complex Titanates of Barium and the Lanthanides,” Russ. J. Inorg. Chem., Vol. 26(4), pp. 482-483, 1981. 53. R.G.. Matveeva, M.B. Varfolomeev, and L.S.ll’yushchenko, “Refinement of the Composition and Crystal Structure of Ba3.75Pr9.5Ti18O54,” Russ. J. Inorg. Chem., Vol. 29(1), pp. 17-19, 1984. 54. J. Takahashi and T. Ikegami, “Occurrence of Dielectric 1:1:4 Compound in the Ternary System BaO-Ln2O3-TiO2 (Ln=La, Nd, and Sm): I, An Improved Coprecipitation Method for Preparing a Single-Phase of Ternary Compound in the BaO-La2O3-TiO2 System,” J. Am. Ceram. Soc., Vol. 74(8), pp. 1868-1872, 1991. 55. J. Takahashi and T. Ikegami, “Occurrence of Dielectric 1:1:4 Compound in the Ternary System BaO-Ln2O3-TiO2 (Ln=La, Nd, and Sm): II, Re-examination of Formation of Isostructural Ternary Compounds in the Identical System,” J. Am. Ceram. Soc., Vol. 74(8), pp. 1873-1879, 1991. 56. K.C. Raju, V. Sivasubranian, and R. Pragasam, “Contributions to the dielectric constant of the system BaLn2Ti4O12 from packing fraction and nephelauxetic ratio,” J. Appl. Phys. Vol. 74(3), pp. 1968-1971, 1993. 57. H. Ohsato, M. Imaeda, Y. Takagi, A. Komura, and T. Okuda, “Microwave quality factor improved by ordering of Ba and rare-earth on the tungsten bronze-type Ba6-3xPr8+2xTi18O54 (R=La, Nd and Sm) solid solutions,” ISAF 98 proc., pp. 509 -512, 1998. 58. D. Suvorov, M. Valant, and D. Kolar, “The Role of Dopants in Tailoring the Microwave Properties of Ba6-3xPr8+2xTi18O54 (R=La-Gd) Ceramics,” J. Mater. Sci., Vol. 32, pp. 6483-6488, 1997. 59. T. Jaakola, A. Uusimäki, R. Rautioaho, and S. Leppävuori, “Matrix Phase in Ceramics with Composition near BaO-Nd2O3-5TiO2,” J. Am. Ceram. Soc., Vol. 69(10), pp. C234-C235, 1986. 60. M.B. Varfolomeev, A.S. Mironov, V.S. Kostomarov, L.A. Golubtsova, and T.A. Zolotova, “The Synthesis and Homogeneity Ranges and Phases Ba6-x/3Pr8+2x/3Ti18O54,” Russ. J. Inorg. Chem., Vol. 33(4), pp. 607-608, 1984. 61. J.M. Wu and M.C. Chang, “Reaction Sequence and Effects of Calcination and Sintering on Microwave Properties of (Ba,Sr)O-Sm2O3-TiO2 Ceramics,” J. Am. Ceram. Soc., Vol. 73(6), pp. 1599-1605, 1990. 62. P. Laffez, G. Desgardin, and B. Raveau, “Influence of calcinations, sintering and composition upon microwave properties of the Ba6-xPr8+2x/3Ti18O54 type oxide,” J. Mater. Sci., Vol. 27, pp. 5229-5239, 1992. 63. X.M. Chen, Y. Suzuki, and N. Sato, “Microstructures and microwave dielectric characteristics of ceramics with the composition BaO-Nd2O3-5TiO2,” J. Mater. In Electronic., Vol. 6, pp. 10-16, 1995. 64. K. Fukuda and R. Kitoh, “Microwave characteristics of BaPr2Ti4O12 and BaPr2Ti5O14 ceramics,” J. Mater. Res., Vol. 10(2), pp. 312-319, 1995. 65. K. M. Cruickshank, X. Jing, G. Wood, E. E. Lachowski and A.R. West, “Barium Neodymium Titanate Electroceramics: Phase Equilibria Studies of Ba6-3xPr8+2xTi18O54 Solid solution,” J. Am. Ceram. Soc., Vol. 79(6), pp. 1605-1610, 1996. 66. V. Satheesh, P. Murugavel and P.R.K. Murthy, and B. Viswanathan, “Synthesis and Role of Nd and Sm on the Microwave Dielectric Properties of BaNd2(1-x)Sm2xTi5O14 Dielectric Resonator,” Material Science and Engineering B48, pp. 202-204, 1997. 67. R. Ubic, I.M. Reaney, and W.E. Lee, “Space Group Determination of Ba6-3xPr8+2xTi18O54,” J. Am. Ceram. Soc., Vol. 82(5), pp. 1336-1338, 1999. 68. H. Okudera, H. Nakamura, H. Toraya, and H. Ohsato, “Tungsten Bronze-type Solid Solutions Ba6-3xPr8+2xTi18O54 (x=0.3, 0.5, 0.67, 0.71) with Superstructure,” J. Solid State Chem., Vol. 142, pp. 336-343, 1999. 69. P.S. Cheng, C.F. Yang, Y.C. Chen, and W.C. Tzou, “The Reaction Sequence and Dielectric Properties of BaSm2Ti4O12 Ceramics,” Ceram. International, Vol. 26, pp. 877-881, 2000. 70. Y. Xu, X.M. Chen and Y.J. Wu, “Preparation of Ba6-3xPr8+2xTi18O54 via Ethylenediaminetetraacetic Acid Precursor,” J. Am. Ceram. Soc., Vol. 83(11), pp. 2893-2895, 2000. 71. P. Laffez, G. Desgardin, and B. Raveau, P.Laffez, G. Desgardin, and B. Raveau, “Microwave dielectric properties of doped Ba6-3x(Sm1-yNdy)Pr8+2xTi18O54 oxides,” J. Mater. Sci., Vol. 30, pp. 267-273, 1995. 72. A.G. Belous and O.V. Ovchar, “MW Dielectrics with Perovskite-like Structure Based on Sm-Containing Systems,” J. Eur. Ceram. Soc., Vol. 19, pp. 1119-1122, 1999. 73. R.M. German, Liquid Phase Sintering, Plenum, New York, 1985. 74. Randall M. German, Sintering theory and practice, Wiley, New York, 1996. 75. J.B. Wachtman and R.A. Haber edited, Ceramic Films and Coatings, Noyes Publications, 1992. 76. H. Altenburg, J. Plewa, G. Plesch, and O. Shpotyuk, “ Thick films of ceramic, superconducting, and electro-ceramic materials,” Pure Appl. Chem., Vol. 74(11), pp. 2083-2096, 2002. 77. J.A. Owczarek and F.L. Howland, “A Study of the Off-Contact Screen Printing Process-Part I: Model of the printing Process and Some Results Derived From Experiments,” IEEE Trans. Components, Hybrids, Manu. Tech., Vol. 13(2), pp. 358-367, 1990. 78. J.A. Owczarek and F.L. Howland, “A Study of the Off-Contact Screen Printing Process-Part II: Model of the printing Process,” IEEE Trans. Components, Hybrids, Manu. Tech., Vol. 13(2), pp. 368-375, 1990. 79. D.E. Riemer, “High-Adhesion Thick-Film Gold Without Glass or Metal-Oxide Powder Additives,” IEEE Trans. Components, Hybrids, Manu. Tech., Vol. CHMT-8, pp. 474-480, 1985. 80. D. E. Riemer, “Analytical Engineering Model of the Screen Printing Process: Part I,” Solid State Tech. No. 8, pp. 107-111, 1988. 81. D. E. Riemer, “Analytical Engineering Model of the Screen Printing Process: Paet II,” Solid State Tech. No. 9, pp. 85-90, 1988. 82. J. L. Larry , R.M. Rosenberg, and R.O. Uhler, “ Thick-Film Technology: An Introduction to the Materials,” IEEE Trans. Vol. CHMT-3(2), pp. 211-225, 1980. 83. K. Yamashita, M. Nagai, and T. Umegaki, “Fabrication of green films of single- and multi- component ceramic composites by electrophoretic deposition technique,” J. Mater. Sci. Vol. 32, pp.6661-6664, 1997. 84. K. Hasegawa, H. Nishimori, M. Tatsumisago, and T. Minami, “Effect of poly(acrylic acid) on the preparation of thick silica films by electrophoretic sol-gel deposition of re-dispersed silica particles,” J. Mat. Sci., Vol. 33, pp. 1095-1098, 1998. 85. P.S. Nicholson, P. Sarker, and S. Datta, ”Producing Ceramic Laminate Composites by EPD,” Am. Ceram. Soc. Bull. Vol. 75(11), pp. 48-64, 1996. 86. E.M. Kostić, Š.J. Kiss, S.B. Bošković, and S.P. Zec, “Mechanically Activated Transition of Anatase to Rutile,” Am. Ceram. Soc. Bull. Vol. 76(6), pp. 60-64, 1997. 87. B.W. Hakki and P.D. Coleman, “A dielectric resonator method of measuring inductive capacitance in the millimeter range,” IRE Trans. Microwave Theory Tech., Vol. MTT-8, pp. 402-410, 1960. 88. D.K. Cheng, Field and Wave Electromagnetics, 2nd Edn., Addison-Wesley, 1989. 89. J. Ross Macdonald, Impedance Spectroscopy, Wiley, New York, 1987. 90. CNS 8834-K0015 Methods of test for density and relative density of chemical products. 91. Phycomp Taiwan Ltd. internal research center K80 data sheet. 92. H. Liang, A. Sutono, J. Laskar, and W.R. Smith, “Material Parameter Characterization of Multilayer LTCC and Implementation of High Q Resonators,” IEEE MTT-S International Microwave Symposium Digest, Vol. 4 pp. 1901-1904, 1999. 93. D. Kolar, S. Gaberscek, Z. Stadler, and D. Suvorov, “High Stability, Low Loss Dielectrics in the System BaO-Nd2O3-TiO2-Bi2O3,” Ferroelectrics, Vol. 27, pp. 269-272, 1980. 94. Y.J. Wu and X.M. Chen, “ Bismuth/Samarium Cosubstituted Ba6-3xNd8+2xTi18O54 Microwave Dielectric Ceramics,” J. Am. Ceram. Soc., Vol. 83(7), pp. 1837-1839, 2000. 95. L.J. Golonka, K.J. Wolter, A. Dziedzic, J. Kita, and L. Rebenklau, “Embedded passive components for MCM,” 24th International Spring Seminar on Electronics Technology (IEEE, Romania, 2001), pp. 73-77, 2001. 96. A. Maljuk, S. Watauchi, I. Tanaha, and H.K. Kojima, “The effect of B2O3 addition on La2-xSrxCuO4 single-crystal growth,” Journal of Crystal Growth, Vol. 212, pp. 138-141, 2000. 97. R.R. Tummala, “Ceramic and Glass-Ceramic Package in the 1990s,” J. Am. Ceram. Soc., Vol. 74, pp.895-980, 1991. 98. S.M. Rhim, S. Hong, H. Bak, and O.K. Kim, “Effect of B2O3 Addition on the Dielectric and Ferroelectric Properties of Ba0.7Sr0.3TiO3 Ceramics,” J. Am. Ceram. Soc., Vol. 83(5), pp. 1145-1148, 2000. 99. P. Liu, E.S. Kim, S.G. Kang, and H.S. Jang, “Microwave dielectric properties of Ca[(Li1/3Nb2/3)1-xTi3x]O3-δ ceramics with B2O3,” Mater. Chem. Phy., Vol. 79, pp. 270-272, 2003. 100. B.S. Chiou, S.T. Lin, J.G. Duh, and P.H. Chang, “Equivalent Circuit Model in Grain-Boundary Barrier Layer Capacitors,” J. Am. Ceram. Soc., Vol. 72(10), pp. 1967-1975, 1989. 101. Z.S. Macedo, C.R. Ferrari, and A.C. Hernandes, “Impedance spectroscopy of Bi4Ti3O12 ceramic produced by self-propagating high-temperature synthesis technique,” J. Eur. Ceram. Soc., Vol. 24, pp. 2567-2574, 2004. 102. K. Lok, C.W. Lu, L. Wai, W. Fan, H. Wong, and C. Neo, “Low Temperature Embedded Capacitor Fabrication,” Electronic Components and Technology Conference, pp. 531-535, 2004. 531. 103. D. Mannath, W. Schaper, and K. Ulrich, “Advanced Decoupling in High Performance IC Packaging,” Electronic Components and Technology Conference, pp. 266-270, 2004. 104. J.W. Liou and B.S. Chiou, “Dielectric tunability of barium strontium titanate/ silicone-rubber composite,” J. Phys.: Condens. Matter, Vol. 10, pp.2773-2786, 1998. 105. K. Yamashita, T. Hamano, and T. Kaga, “The Thickness-Dependence of Dielectric and Physical Properties of BaTiO3 Ceramic Thick Films,” Jpn. J. Appl. Phy. Vol. 22(4), pp.580-584, 1983.
|