跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 03:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張麗君
研究生(外文):Li-Chun Chang
論文名稱:鈦酸釤釹鋇微波介電材料之製備與應用之研究
論文名稱(外文):Study on Fabrication and Application of Ba(Nd, Sm)2Ti4O12 Microwave Dielectrics
指導教授:邱碧秀
指導教授(外文):Bi-Shiou Chiou
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:155
中文關鍵詞:微波介電陶瓷低溫燒結
外文關鍵詞:microwavedielectric ceramicslow temperature sintering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,由於高頻通訊元件快速發展,輕薄短小為現今元件之重要研究目標;為了要增加高頻的應用範圍、降低其生產成本、並達到體積的微小化,高介電常數及低損失因子等特性的需求更為迫切。其中,生產成本的降低是工業製造的最重要考量因素,而積層電容中的電極材料的成本佔總成本很大的部份,目前工業上最常用的內電極材料為鈀(Pd) 電極或銀-鈀(Ag-Pd) 電極,因此降低燒結溫度便為發展介電材料的重要趨勢,使其能夠和低耗損且低成本金屬如銀、銅或金等進行低溫共燒,是非常迫切需要的。本論文針對上述之方向做了下列三大部分進行探討與研究:
一、高介電常數及低損失因子之微波介電陶瓷材料備製
1. 嘗試在介電特性優良的鈦酸鋇釹釤介電材料中,加入適當的玻璃(Al2O3-doped glass) 以降低其燒結溫度,且依然擁有很好的微波特性。結果顯示,燒結溫度由1350℃降到1250℃,品質因子 (Q× f ) 由6000 GHz 提高至8700 GHz (at8 GHz),介電常數為30。
2. 低熔點之氧化硼的添加對Ba(Nd, Sm)2Ti4O12 介電材料之研究。研究發現,添加2 wt% 氧化硼的BNST 於燒結溫度為960℃時,其相對燒結密度可達到96%;添加1 wt% 氧化硼的BNST 於燒結溫度為1020℃時品質因子(Q× f ) 可達5500 GHz (at 6 GHz),介電常數為37。
以上兩種添加燒結助劑的顯微結構,皆出現具有 (002) 方向之從優取向的柱狀結晶。於添加氧化硼的系統中,本文對其液相燒結行為作深入的探討,並以X 光繞射的峰值與其添加燒結助劑相連結,進而提出其經驗式。
二、以阻抗分析法探究添加物對介電性質之影響
藉由阻抗分析法之高靈敏、簡易、可評估燒結體之晶體界面間等特性,以分析添加物及晶體結構對介電性質的影響。研究結果顯示,Cg、Cgb 隨著 (002) 從優取向的程度增加而有遞增的趨勢;添加玻璃的材料系統中發現,太多的玻璃相反而導致Cgb降低;研究亦發現ρg、ρgb 會隨著添加物的含量增加而降低。
三、介電厚膜之電容製作
利用第一部份之研究成果為基礎,以印刷電路的方式製作電容,研究其作為嵌入式被動元件之可行性。介電性質主要受到介電層塗佈是否均質與其表面粗糙度的影響。適當的控制之下,厚膜的介電常數可達65。
Contents
Abstract (in Chinese) -------------------------------------------------------------------------- i
Abstract (in English) -------------------------------------------------------------------------- iii
Acknowledgements ---------------------------------------------------------------------------- vi
Contents ----------------------------------------------------------------------------------------- vii
List of Tables ------------------------------------------------------------------------------------ xi
Figures Caption -------------------------------------------------------------------------------- xii
Chapter 1 Introduction
1-1 Background ------------------------------------------------------------------------------- 1-1
1-2 Motive and Goal of this Research ----------------------------------------------------- 1-9
1-3 Method of Attack ------------------------------------------------------------------------ 1-10
1-4 Outline of the Thesis ------------------------------------------------------------------ 1-11
Chapter 2 Literatures Review
2-1 Microwave Dielectrics ------------------------------------------------------------------ 2-1
2-1-1 Theory of Microwave Dielectric Properties ---------------------------------------- 2-1
2-1-2 The Importance of Interface ---------------------------------------------------------- 2-1
2-2 Overview of Microwave Dielectric Materials --------------------------------------- 2-7
2-2-1 Materials Properties for Microwave Application ---------------------------------- 2-7
2-2-2 Classification of Capacitors ----------------------------------------------------------- 2-12
2-2-3 High-k Ceramic Dielectrics ----------------------------------------------------------- 2-14
2-3 Liquid Phase Sintering ------------------------------------------------------------------ 2-25
2-4 Overview of Thick Film Process ------------------------------------------------------ 2-29
Chapter 3 Measurements and Analysis
3-1 Resonance Technique for Microwave Dielectric ------------------------------------ 3-1
3-2 Impedance Spectroscopy --------------------------------------------------------------- 3-4
3-3 Electrical Properties Measurements --------------------------------------------------- 3-9
3-3-1 Dielectric Properties Measurements ------------------------------------------------- 3-9
3-3-2 Temperature-controlled Impedance Measurement System ----------------------- 3-9
3-4 Materials Analysis ----------------------------------------------------------------------- 3-12
3-4-1 Density Measurement ------------------------------------------------------------------ 3-12
3-4-2 Phase Identification -------------------------------------------------------------------- 3-12
3-4-3 Composition Analysis ------------------------------------------------------------------ 3-12
3-4-4 Microstructure Observation ----------------------------------------------------------- 3-13
Chapter 4 Sample Preparations
4-1 BNST Bulk Samples -------------------------------------------------------------------- 4-1
4-2 Thick Film Capacitors ------------------------------------------------------------------ 4-2
Chapter 5 Effect of Glass Additions on the Sintering Behaviors and Electrical Microwave Properties of BaO-Nd2O3-Sm2O3-TiO2 Ceramics
5-1 Introduction ------------------------------------------------------------------------------- 5-1
5-2 Microstructure Characteristics --------------------------------------------------------- 5-3
5-3 Microwave Properties ------------------------------------------------------------------- 5-13
5-4 Summary ---------------------------------------------------------------------------------- 5-17
Chapter 6 Effect of B2O3 Nano-coating on the Sintering Behaviors and Electrical Microwave Properties of Ba(Nd2-xSmx)Ti4O12 Ceramics
6-1 Introduction ------------------------------------------------------------------------------- 6-1
6-2 Microstructure Characteristics --------------------------------------------------------- 6-2
6-3 Microwave Properties ------------------------------------------------------------------- 6-18
6-4 Summary ---------------------------------------------------------------------------------- 6-20
Chapter 7 Electrical Behavior of BaO-Nd2O3-Sm2O3-TiO2 with Glass/Oxide Additives Analyzed by Impedance Spectroscopy
7-1 Introduction ------------------------------------------------------------------------------- 7-1
7-2 Microstructure and Lattice Characteristics ------------------------------------------- 7-2
7-3 Impedance Spectroscopy Analysis ---------------------------------------------------- 7-9
7-4 Summary ---------------------------------------------------------------------------------- 7-19
Chapter 8 Microstructure and Electrical Properties of Ba(Nd, Sm)2Ti4O12 Thick-film Capacitor
8-1 Introduction ------------------------------------------------------------------------------- 8-1
8-2 Microstructure Characteristics --------------------------------------------------------- 8-3
8-3 Dielectric Properties --------------------------------------------------------------------- 8-7
8-4 Summary ---------------------------------------------------------------------------------- 8-17
Chapter 9 Conclusions 9-1
References --------------------------------------------------------------------------------------- R-1
Appendix
A-I The Quality Factor ----------------------------------------------------------------------- A-1
A-II The Classification of Quality Factor -------------------------------------------------- A-5
A-III Analysis of Dielectric Resonator ------------------------------------------------------ A-9
1. H.S. Nalwa edited, Handbook of Low and High Dielectric Constant Materials and Their Applications, Academic Press, San Diego, 1999.
2. G. Heftman, “Wireless Industry Fortunes Continue To Multiply ” Microwaves & RF, December, pp.57-58, 1997.
3. S. Smyser and J. Rebello, “Wireless Systems Market Tracker,” iSuppli corp., 2005.
4. 林韋志, “全球手機銷售狀況,” ITIS Project, IEK/ITRI, 2005.05.06
5. R.D. Richtmyer, “Dielectric Resonators,” J. Appl. Phys., Vol. 10, pp. 391-398, 1939.
6. P. Guillon, “Dielectric Resonators,” 42nd Annual Frequency Control Symposium, pp. 259-262, 1988.
7. K. Wakino, Y. Tsujimoto, K. Morimoto, and N. Ushio, “Technological Progress in Materials Application for Electronic Capacitors in Japan,” IEEE Electrical Insulation Magazine, Vol. 6(3), pp. 29-43, 1990.
8. D. Kajfez and P. Guillon edited, Dielectric Resonators, Artech House, Massachusetts, 1986.
9. M. Kawasaki, Y. Hara, Y. Yamashiki, N. Asahi, R. Nagase, T. Ueoka, M. Yoshioka, and T. Nonaka, “ Development of High-k Inorganic/Organic Composite Material for Embedded Capacitors,” Proc. 54th Electronic Components and Technology Conf., pp. 525-530, 2004.
10. J.W. Xu, M. Wong, and C.P. Wong, “ Super High Dielectric Constant Carbon Black-Filled Polymer Composites as Integral Capacitor Dielectrics,” Proc. 54th Electronic Components and Technology Conf., pp. 536-541, 2004.
11. Y. Rao and C.P. Wong, “Ultra High Dielectric Constant Epoxy Silver Composite for Embedded Capacitor Applications,” Proc. 52th Electronic Components and Technology Conf., pp. 920-924, 2002.
12. D. Majumdar, W. Borland, J. Felten, L. Delles, and M. Doyle, “New Ceramic Materials for Embedded Passives,” Proc. IPC 1st International Conf. on Embedded Passives, pp. 30-35, 2003.
13. S. Liang, “Barium Titanate/Epoxy Composite Dielectric Materials for Intrgrated Thin Film Capacitors,” Proc. 48th Electronic Components and Technology Conf., pp. 171-178, 1998.
14. B.W. Hakki and P.D. Coleman, “A dielectric resonator method of measuring inductive capacitance in the millimeter range,” IRE Trans. Microwave Theory Tech., Vol. MTT-8, pp.402-410, 1960.
15. Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric resonator method,” IEEE Trans. Microwave Theory Tech., Vol. MTT-33(7), pp. 586-592, 1985.
16. T. Nomura, J. Miura, T. Arashi, Y. Nakano, and A. Sato, “Multilayer Ceramic Capacitors-Recent Trends,” Proc. of the 10th IEEE International Symposium on Applications of Ferroelectrics, pp. 135-141, 1996.
17. C. Robert and J. Melvin edited, CRC Handbook of Chemistry and Physics 61st edn., CRC Press, Florida, 1981.
18. T. Takada, S.F. Wang, S. Yoshikawa, S.J. Jang, and R. E. Newnham, “Effect of Glass additions on BaO-TiO2-WO3 Microwave Ceramics,” J. Am. Ceram. Soc., Vol. 77(7), pp. 1909-1916, 1994.
19. T. Takada, S.F. Wang, S. Yoshikawa, S.J. Jang, and R.E. Newnham, “Effect of Glass additions on (Zr, Sn)TiO4 for Microwave Applications,” J. Am. Ceram. Soc., Vol. 77(9), pp. 2485-2488, 1994.
20. O. Dernovsek, A. Naeini, G. Preu, W. Wersing, M. Eberstein and W. A Schiller, ” LTCC glass-ceramic composites for microwave application”, J. Euro. Ceram. Soc., Vol. 21, pp. 1693-1697, 2001.
21. H.S. Nalwa, Handbook of low and high dielectric constant materials and their applications, Academic Press, San Diego, 1999.
22. W.D. Kingery, H.K. Browen and D.R. Uhlmann, Intriduction to Ceramics, 2nd Edn., Wiley, 1976.
23. K.M. Luk and K.W. Leung edited, Dielectric resonator antennas, Artech House, Massachusetts, Philadelphia, Research Studies Press, 2003.
24. W.G. Spitzer, R.C. Miller, D.A. Kleinman, and L.E. Howarth, “Far Infrared Dielectric Dispersion in BaTiO3, SrTiO3, and TiO2,” Phys. Rev., Vol. 126(5), pp. 1710-1721, 1962.
25. K. Wakino, M. Murata and H. Tamura, “Far Infrared Reflection Spectra of Ba(Zn,Ta)O3-BaZrO3 Dielectric Resonator Material,” J. Am. Ceram. Soc., Vol. 69(1), pp. 34-37, 1986.
26. W.E. Courtney, “Analysis and Evaluation of a Method of Measuring the complex Permittivity and Permeability of Microwave Insulators,” IEEE Transactions on Microwave Theory and Tech., Vol. MTT-18(8), pp. 476-485, 1970.
27. A.A. Anappara, S. Rajeshkumar, P. Mukundan, P.R.S. Warrier, S. Ghosh, and K.G.K. Warrier, “Impedance spectroscopic studies of sol–gel derived subcritically dried silica aerogels,” Acta Materialia Vol. 52(2), pp. 369-375, 2004.
28. S. Kim and J. Maier, “Partial electronic and ionic conduction in nanocrystalline ceria: role of space charge,” J. Eur. Ceram. Soc. Vol. 24(6), pp. 1919-1923, 2004.
29. Z.S. Macedo, C.R. Ferrari, and A.C. Hernandes, “Impedance spectroscopy of Bi4Ti3O12 ceramic produced by self-propagating high-temperature synthesis technique,” J. Eur. Ceram. Soc. Vol. 24(9), pp. 2567-2574, 2004.
30. V.L. Gurevich, “Dielectric loss in crystals,” Sov. Phys. Solid State, Vol. 21(11), pp.1993-1998, 1979.
31. V.L. Gurevich and A.K. Tagantsev, “Intrinsic dielectric loss in crystals: Low temperature,” Sov. Phys. JETP, Vol. 64(1), pp.142-151, 1986.
32. B.D. Silverman, “Microwave Absorption in Cubic Strontium Titanate,” Phys. Rev, Vol. 125(6), pp.1921-1930, 1962.
33. A.J. Moulson and J.M. Herbert, Electroceramics, 2nd edition, Wiley, England, 2003.
34. S.J. Fiedziuszko, I.C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S.N. Stitzer, and K. Wakino, “Dielectric Materials, Devices, and Circuits,” IEEE Trans. Microwave Theory Tech., Vol. 50(3), pp. 706-720, 2002.
35. B.D. Lee, H.R. Lee, K.H. Yoon, and Y.S. Cho, “Microwave dielectric properties of magnesium calcium titanate thin films,” Ceram. International Vol. 31, pp. 143-146, 2005.
36. Y. Higuchi and H. Tamura Wakino, “Recent progress on the dielectric properties of dielectric resonator materials with their applications from microwave to optical frequencies,” J. Eur. Ceram. Soc., Vol. 23, pp. 2683-2688, 2003.
37. S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi, “Ba(Zn1/3Ta2/3)O3 ceramic with low dielectric loss,” J. Am. Ceram. Soc., Vol. 66(6), pp. 421-423, 1983.
38. V. Tolmer and G. Desgardin, “Low-Temperature Sintering and Influence of the Process on the Dielectric Properties of Ba(Zn1/3Ta2/3)O3,” J. Am. Ceram. Soc., Vol. 80(8), pp. 1981-1991, 1997.
39. H. Tamura, T. Konoike, and K. Wakino, “Improved high-Q dielectric resonator with complex perovskite structure,” J. Am. Ceram. Soc., Vol. 67, pp. C59-C61, 1984.
40. W.S. Kim, T.H. Kim, E.S. Kim, and K.H. Yoon, “Microwave Dielectric Properties and Far Infrared Reflectivity Spectra of the (Zr0.8Sn0.2)TiO4 Ceramics with additives,” Jpn. J. Appl. Phys., Vol. 37, pp. 5367-5371, 1998.
41. I. Teoreanu, E. Andronescu, and A. Folea, “Microwave Processing of Ba2Ti9O20 Ceramic,” Ceram. International, Vol. 22, pp.305-307, 1996.
42. K. Wakino, K. Minai, and H. Tamura, “Microwave characteristics of (Zr, Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 dielectric resonator,” J. Am. Ceram. Soc., Vol. 67(4), pp. 278-281, 1984.
43. C.L. Huang, H.L. Chen, and C.C. Wu, “Improved high Q value of CaTiO3 -Ca(Mg1/3Nb2/3)O3 solid solution with near zero temperature coefficient of resonant frequency,” Mat. Res. Bull., Vol. 36, pp. 1645-1652, 2001.
44. C. Vigreux, B. Deneuve, J. El Fallah, and J.M. Haussonne, “Effects of acceptor and donor additives on the properties of MagTiO3 ceramics sintered under reducing atmosphere,” J. Eur. Ceram. Soc., Vol. 21, pp. 1681-1684, 2001.
45. H.M. O’Bryan, J. Thomson, and J.K. Plourde, “A new BaO-TiO2 compound with temperature-stable high permittivity and low microwave loss,” J. Am. Ceram. Soc., Vol. 57(10), pp. 450-453, 1974.
46. H.M. O’Bryan and J. Thomson, “Ba2Ti9O20 Phase Equilibria,” J. Am. Ceram. Soc., Vol. 66(1), pp. 66-68, 1983.
47. S. Nishigaki, S. Yano, H. Kato, T. Hirai, and T. Nonomura, “BaO-TiO2-WO3 microwave ceramics and crystalline BaWO4,” J. Am. Ceram. Soc., Vol. 71(1), pp. C11-C17, 1988.
48. D. Kolar, S. Gaberscek, B. Volavsek, H.S. Parjer, and R.S. Roth, “Synthesis and Crystal Chemistry of BaNd3Ti3O10, BaNd2Ti5O14, and Nd4Ti9O24,” J. Solid State Chem., Vol. 38, pp. 158-164, 1981.
49. S. Nishigaki, H. Kato, S. Yano, and R. Kamimura, “Microwave dielectric properties of (Ba,Sr)O-Sm2O3-TiO2 ceramics,” Am. Ceram. Soc. Bull., vol. 66, pp. 1405–1410, 1987.
50. E.S. Razgon, A.M. Gens, M.B. Varfolomeev, S.S. Korovin, and V.S. Kostomarov, “The Complex Barium and Lanthanum Titanates,” Russ. J. Inorg. Chem., Vol. 25(6), pp. 945-947, 1980.
51. E.S. Razgon, A.M. Gens, M.B. Varfolomeev, S.S. Korovin, and V.S. Kostomarov, “Some Barium Lanthanide Titanates,” Russ. J. Inorg. Chem., Vol. 25(8), pp. 1274 -1275, 1980.
52. A.M. Gens, M.B. Varfolomeev, V.S. Kostomarov, and S.S. Korovin, “Crystal electrophysical Properties of Complex Titanates of Barium and the Lanthanides,” Russ. J. Inorg. Chem., Vol. 26(4), pp. 482-483, 1981.
53. R.G.. Matveeva, M.B. Varfolomeev, and L.S.ll’yushchenko, “Refinement of the Composition and Crystal Structure of Ba3.75Pr9.5Ti18O54,” Russ. J. Inorg. Chem., Vol. 29(1), pp. 17-19, 1984.
54. J. Takahashi and T. Ikegami, “Occurrence of Dielectric 1:1:4 Compound in the Ternary System BaO-Ln2O3-TiO2 (Ln=La, Nd, and Sm): I, An Improved Coprecipitation Method for Preparing a Single-Phase of Ternary Compound in the BaO-La2O3-TiO2 System,” J. Am. Ceram. Soc., Vol. 74(8), pp. 1868-1872, 1991.
55. J. Takahashi and T. Ikegami, “Occurrence of Dielectric 1:1:4 Compound in the Ternary System BaO-Ln2O3-TiO2 (Ln=La, Nd, and Sm): II, Re-examination of Formation of Isostructural Ternary Compounds in the Identical System,” J. Am. Ceram. Soc., Vol. 74(8), pp. 1873-1879, 1991.
56. K.C. Raju, V. Sivasubranian, and R. Pragasam, “Contributions to the dielectric constant of the system BaLn2Ti4O12 from packing fraction and nephelauxetic ratio,” J. Appl. Phys. Vol. 74(3), pp. 1968-1971, 1993.
57. H. Ohsato, M. Imaeda, Y. Takagi, A. Komura, and T. Okuda, “Microwave quality factor improved by ordering of Ba and rare-earth on the tungsten bronze-type Ba6-3xPr8+2xTi18O54 (R=La, Nd and Sm) solid solutions,” ISAF 98 proc., pp. 509 -512, 1998.
58. D. Suvorov, M. Valant, and D. Kolar, “The Role of Dopants in Tailoring the Microwave Properties of Ba6-3xPr8+2xTi18O54 (R=La-Gd) Ceramics,” J. Mater. Sci., Vol. 32, pp. 6483-6488, 1997.
59. T. Jaakola, A. Uusimäki, R. Rautioaho, and S. Leppävuori, “Matrix Phase in Ceramics with Composition near BaO-Nd2O3-5TiO2,” J. Am. Ceram. Soc., Vol. 69(10), pp. C234-C235, 1986.
60. M.B. Varfolomeev, A.S. Mironov, V.S. Kostomarov, L.A. Golubtsova, and T.A. Zolotova, “The Synthesis and Homogeneity Ranges and Phases Ba6-x/3Pr8+2x/3Ti18O54,” Russ. J. Inorg. Chem., Vol. 33(4), pp. 607-608, 1984.
61. J.M. Wu and M.C. Chang, “Reaction Sequence and Effects of Calcination and Sintering on Microwave Properties of (Ba,Sr)O-Sm2O3-TiO2 Ceramics,” J. Am. Ceram. Soc., Vol. 73(6), pp. 1599-1605, 1990.
62. P. Laffez, G. Desgardin, and B. Raveau, “Influence of calcinations, sintering and composition upon microwave properties of the Ba6-xPr8+2x/3Ti18O54 type oxide,” J. Mater. Sci., Vol. 27, pp. 5229-5239, 1992.
63. X.M. Chen, Y. Suzuki, and N. Sato, “Microstructures and microwave dielectric characteristics of ceramics with the composition BaO-Nd2O3-5TiO2,” J. Mater. In Electronic., Vol. 6, pp. 10-16, 1995.
64. K. Fukuda and R. Kitoh, “Microwave characteristics of BaPr2Ti4O12 and BaPr2Ti5O14 ceramics,” J. Mater. Res., Vol. 10(2), pp. 312-319, 1995.
65. K. M. Cruickshank, X. Jing, G. Wood, E. E. Lachowski and A.R. West, “Barium Neodymium Titanate Electroceramics: Phase Equilibria Studies of Ba6-3xPr8+2xTi18O54 Solid solution,” J. Am. Ceram. Soc., Vol. 79(6), pp. 1605-1610, 1996.
66. V. Satheesh, P. Murugavel and P.R.K. Murthy, and B. Viswanathan, “Synthesis and Role of Nd and Sm on the Microwave Dielectric Properties of BaNd2(1-x)Sm2xTi5O14 Dielectric Resonator,” Material Science and Engineering B48, pp. 202-204, 1997.
67. R. Ubic, I.M. Reaney, and W.E. Lee, “Space Group Determination of Ba6-3xPr8+2xTi18O54,” J. Am. Ceram. Soc., Vol. 82(5), pp. 1336-1338, 1999.
68. H. Okudera, H. Nakamura, H. Toraya, and H. Ohsato, “Tungsten Bronze-type Solid Solutions Ba6-3xPr8+2xTi18O54 (x=0.3, 0.5, 0.67, 0.71) with Superstructure,” J. Solid State Chem., Vol. 142, pp. 336-343, 1999.
69. P.S. Cheng, C.F. Yang, Y.C. Chen, and W.C. Tzou, “The Reaction Sequence and Dielectric Properties of BaSm2Ti4O12 Ceramics,” Ceram. International, Vol. 26, pp. 877-881, 2000.
70. Y. Xu, X.M. Chen and Y.J. Wu, “Preparation of Ba6-3xPr8+2xTi18O54 via Ethylenediaminetetraacetic Acid Precursor,” J. Am. Ceram. Soc., Vol. 83(11), pp. 2893-2895, 2000.
71. P. Laffez, G. Desgardin, and B. Raveau, P.Laffez, G. Desgardin, and B. Raveau, “Microwave dielectric properties of doped Ba6-3x(Sm1-yNdy)Pr8+2xTi18O54 oxides,” J. Mater. Sci., Vol. 30, pp. 267-273, 1995.
72. A.G. Belous and O.V. Ovchar, “MW Dielectrics with Perovskite-like Structure Based on Sm-Containing Systems,” J. Eur. Ceram. Soc., Vol. 19, pp. 1119-1122, 1999.
73. R.M. German, Liquid Phase Sintering, Plenum, New York, 1985.
74. Randall M. German, Sintering theory and practice, Wiley, New York, 1996.
75. J.B. Wachtman and R.A. Haber edited, Ceramic Films and Coatings, Noyes Publications, 1992.
76. H. Altenburg, J. Plewa, G. Plesch, and O. Shpotyuk, “ Thick films of ceramic, superconducting, and electro-ceramic materials,” Pure Appl. Chem., Vol. 74(11), pp. 2083-2096, 2002.
77. J.A. Owczarek and F.L. Howland, “A Study of the Off-Contact Screen Printing Process-Part I: Model of the printing Process and Some Results Derived From Experiments,” IEEE Trans. Components, Hybrids, Manu. Tech., Vol. 13(2), pp. 358-367, 1990.
78. J.A. Owczarek and F.L. Howland, “A Study of the Off-Contact Screen Printing Process-Part II: Model of the printing Process,” IEEE Trans. Components, Hybrids, Manu. Tech., Vol. 13(2), pp. 368-375, 1990.
79. D.E. Riemer, “High-Adhesion Thick-Film Gold Without Glass or Metal-Oxide Powder Additives,” IEEE Trans. Components, Hybrids, Manu. Tech., Vol. CHMT-8, pp. 474-480, 1985.
80. D. E. Riemer, “Analytical Engineering Model of the Screen Printing Process: Part I,” Solid State Tech. No. 8, pp. 107-111, 1988.
81. D. E. Riemer, “Analytical Engineering Model of the Screen Printing Process: Paet II,” Solid State Tech. No. 9, pp. 85-90, 1988.
82. J. L. Larry , R.M. Rosenberg, and R.O. Uhler, “ Thick-Film Technology: An Introduction to the Materials,” IEEE Trans. Vol. CHMT-3(2), pp. 211-225, 1980.
83. K. Yamashita, M. Nagai, and T. Umegaki, “Fabrication of green films of single- and multi- component ceramic composites by electrophoretic deposition technique,” J. Mater. Sci. Vol. 32, pp.6661-6664, 1997.
84. K. Hasegawa, H. Nishimori, M. Tatsumisago, and T. Minami, “Effect of poly(acrylic acid) on the preparation of thick silica films by electrophoretic sol-gel deposition of re-dispersed silica particles,” J. Mat. Sci., Vol. 33, pp. 1095-1098, 1998.
85. P.S. Nicholson, P. Sarker, and S. Datta, ”Producing Ceramic Laminate Composites by EPD,” Am. Ceram. Soc. Bull. Vol. 75(11), pp. 48-64, 1996.
86. E.M. Kostić, Š.J. Kiss, S.B. Bošković, and S.P. Zec, “Mechanically Activated Transition of Anatase to Rutile,” Am. Ceram. Soc. Bull. Vol. 76(6), pp. 60-64, 1997.
87. B.W. Hakki and P.D. Coleman, “A dielectric resonator method of measuring inductive capacitance in the millimeter range,” IRE Trans. Microwave Theory Tech., Vol. MTT-8, pp. 402-410, 1960.
88. D.K. Cheng, Field and Wave Electromagnetics, 2nd Edn., Addison-Wesley, 1989.
89. J. Ross Macdonald, Impedance Spectroscopy, Wiley, New York, 1987.
90. CNS 8834-K0015 Methods of test for density and relative density of chemical products.
91. Phycomp Taiwan Ltd. internal research center K80 data sheet.
92. H. Liang, A. Sutono, J. Laskar, and W.R. Smith, “Material Parameter Characterization of Multilayer LTCC and Implementation of High Q Resonators,” IEEE MTT-S International Microwave Symposium Digest, Vol. 4 pp. 1901-1904, 1999.
93. D. Kolar, S. Gaberscek, Z. Stadler, and D. Suvorov, “High Stability, Low Loss Dielectrics in the System BaO-Nd2O3-TiO2-Bi2O3,” Ferroelectrics, Vol. 27, pp. 269-272, 1980.
94. Y.J. Wu and X.M. Chen, “ Bismuth/Samarium Cosubstituted Ba6-3xNd8+2xTi18O54 Microwave Dielectric Ceramics,” J. Am. Ceram. Soc., Vol. 83(7), pp. 1837-1839, 2000.
95. L.J. Golonka, K.J. Wolter, A. Dziedzic, J. Kita, and L. Rebenklau, “Embedded passive components for MCM,” 24th International Spring Seminar on Electronics Technology (IEEE, Romania, 2001), pp. 73-77, 2001.
96. A. Maljuk, S. Watauchi, I. Tanaha, and H.K. Kojima, “The effect of B2O3 addition on La2-xSrxCuO4 single-crystal growth,” Journal of Crystal Growth, Vol. 212, pp. 138-141, 2000.
97. R.R. Tummala, “Ceramic and Glass-Ceramic Package in the 1990s,” J. Am. Ceram. Soc., Vol. 74, pp.895-980, 1991.
98. S.M. Rhim, S. Hong, H. Bak, and O.K. Kim, “Effect of B2O3 Addition on the Dielectric and Ferroelectric Properties of Ba0.7Sr0.3TiO3 Ceramics,” J. Am. Ceram. Soc., Vol. 83(5), pp. 1145-1148, 2000.
99. P. Liu, E.S. Kim, S.G. Kang, and H.S. Jang, “Microwave dielectric properties of Ca[(Li1/3Nb2/3)1-xTi3x]O3-δ ceramics with B2O3,” Mater. Chem. Phy., Vol. 79, pp. 270-272, 2003.
100. B.S. Chiou, S.T. Lin, J.G. Duh, and P.H. Chang, “Equivalent Circuit Model in Grain-Boundary Barrier Layer Capacitors,” J. Am. Ceram. Soc., Vol. 72(10), pp. 1967-1975, 1989.
101. Z.S. Macedo, C.R. Ferrari, and A.C. Hernandes, “Impedance spectroscopy of Bi4Ti3O12 ceramic produced by self-propagating high-temperature synthesis technique,” J. Eur. Ceram. Soc., Vol. 24, pp. 2567-2574, 2004.
102. K. Lok, C.W. Lu, L. Wai, W. Fan, H. Wong, and C. Neo, “Low Temperature Embedded Capacitor Fabrication,” Electronic Components and Technology Conference, pp. 531-535, 2004. 531.
103. D. Mannath, W. Schaper, and K. Ulrich, “Advanced Decoupling in High Performance IC Packaging,” Electronic Components and Technology Conference, pp. 266-270, 2004.
104. J.W. Liou and B.S. Chiou, “Dielectric tunability of barium strontium titanate/ silicone-rubber composite,” J. Phys.: Condens. Matter, Vol. 10, pp.2773-2786, 1998.
105. K. Yamashita, T. Hamano, and T. Kaga, “The Thickness-Dependence of Dielectric and Physical Properties of BaTiO3 Ceramic Thick Films,” Jpn. J. Appl. Phy. Vol. 22(4), pp.580-584, 1983.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top