跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 22:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳師道
研究生(外文):Shih-Dao Wu
論文名稱:以四埠散射參數量測射頻金氧半電晶體特性並製作其高頻等效電路模型
論文名稱(外文):Characterization and Modeling of RF MOSFET’s Based on Four-Port Scattering-Parameter Measurement
指導教授:張俊彥
指導教授(外文):Chun-Yen Chang
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:163
中文關鍵詞:四埠散射參數量測高頻金氧半場效電晶體小訊號等效電路模型
外文關鍵詞:4-port s-parameters measurementRF CMOSFETsmall-signal equivalent circuit model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:330
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
先進的互補金氧半製程使得射頻金氧半電晶體成為製造快速成長的無線通訊產品的候選者之一,以金氧半電晶體設計無線通訊電路,將有希望把無線通訊系統中的前端射頻模組、基頻電路、數位處理電路三部分整合在單一晶片中,如此不但可降低生產成本,也增加了通訊產品的可攜性。然而以金氧半電晶體設計射頻電路具有一定的挑戰性,因為元件內部會產生複雜的訊號耦合,特別是基板的部分,因此提供可以準確預測元件高頻特性的元件模型供電路設計者使用,是當前的要務。傳統雙埠量測方式並無法有效的完整探測四端點金氧半電晶體特性,通常必須將金氧半電晶體設定為共源組態,將源極和基板連接在一起並接地,以配合雙埠量測系統,如此將無法量測源極與基板之間的訊號耦合效應,也無法將汲極與基板間的耦合效應從汲極的輸出特性中分離。本論文提出並實現了以四埠散射參數在晶量測金氧半電晶體的量測方式。
在本論文中,首先重新整理基本的單埠散射參數原理,並將其觀念延伸至多埠的應用,另外也簡介了本研究所使用的四埠參數量測系統及其校正的原理。
接著提出了四埠量測所使用的在晶量測結構,包括了去除量測結構本身寄生效應的傀儡結構,並發展了去除量測結構寄生效應的方法。利用這些四埠測試結構,實現了以四埠參數量測射頻電晶體的構想,一次的四埠參數量測,即可獲得電晶體操作在共源、共閘、共汲的高頻特性。
此外本論文也提出了具有合理基板電容電阻寄生元件的金氧半電晶體小訊號等效電路模型,並根據四埠量測所得的金氧半電晶體高頻特性,發展粹取小訊號等效電路模型中各元件參數值之方法,實驗中並粹取了不同尺寸的金氧半電晶體等效電路模型中的相關參數,粹取得隨元件尺寸縮小放大的模型參數。
最後,將小訊號等效墊路模型以及根據四埠量測資料粹取出的電路參數以電路模擬軟體模擬其輸出特性,並將此模擬特性與實際量測的高頻特性比較,在100MHz到20GHz的量測頻率範圍內,獲得優良的模擬結果。
With superior advancement of CMOS technologies, RF MOSFET’s have become an important candidate for the rapid growing wireless communication applications. Communication applications base on COMS technologies are potential to integrate the RF front end, base-band and DSP module together on a single chip, which not only improve the production cost but also the portability of modern communication applications. However, designing RF circuit base on CMOS devices is a challenge since the complex signal coupling inside the device, especially the substrate coupling effect. Therefore, establishing a model accurately predicts the RF behaviors of CMOS devices is an urgent mission. The traditional two-port characterization method is inefficient to investigate the detail RF behavior of a four terminal MOSFET. The MOSFET is a device with four terminals and will be always arranged in two-port common source configuration with its source and body grounded to fit the traditional two-port measurement system. Tying the source and body together will result in some consequences that the coupling path between the source and body will not be able to be characterized and the coupling between drain and body will not be able to separated from the output characteristics either.
In this thesis, the four-port S-parameter measurement was proposed and demonstrated for the usage of on-wafer characterization of RF MOSFET’s.
First of all, the basic principles of one-port scattering parameter were reviewed and were extended for multi-port application. The four-port system was also introduced including the calibration methodology.
Next, the four-port test structures for characterizing RF MOSFET’s including dummy structures were proposed. The corresponding de-embedding method was also developed. With the proposed test structures and MOSFET device, the RF characteristics of the MOSFET configured in common source, common gate, and common drain mode was characterized at one four-port measurement procedure.
Then, small-signal equivalent circuits with reasonable substrate R-C network for device in different operation mode were proposed and discussed. Extraction methods of the components in these equivalent circuits according to the four-port measurement data were deduced in detail. The extractions of the components for devices in different dimensions were also demonstrated, good scalability of the extracted values with the device dimensions was observed.
Finally, the output characteristics of the proposed small-signal equivalent circuits were simulated according to the components extracted from the four-port measurement. The simulated results were compared with the measurement data; good agreement of the Y-parameters from 100MHz to 20GHz was obtained, which suggest the feasibility of applying four-port on-wafer measurement for characterizing RF MOSFET’s.
Contents
Chinese Abstract i
English Abstract iii
Figure Captions v
Table Captions xiii
Chapter 1 Introduction 1
Chapter 2 Multi-Port Scattering Parameters and Four-Port Measurement System 7
2.1 Introduction 7
2.2 Multi-Port Scattering Parameters 8
2.3 Four-Port Measurement System 16
2.3.1 Four-Port Measurement System 16
2.3.2 Calibration 16
2.4 Summary 18
Chapter 3 Characterizing RF MOSFET’s by Four-Port Measurement 25
3.1 Motivation 25
3.2 Four-Port RF MOSFET’s 26
3.3 Dummy Structures and De-Embedding Procedure 27
3.4 Four-Port Y-parameters and Port Reduction 29
3.5 Measurement Results and Discussions 30
3.5.1 Measurement Results of Devices with Different Dimensions 30
3.5.2 Two-Port Scattering Parameter of The Common Source, Common Drain, and Common Gate RF MOSFET,s 32
3.6 Summary 35
Chapter 4 Small-Signal Equivalent Circuit Model of RF MOSFET and Parameter Extraction 59
4.1 Motivation 59
4.2 Small-Signal Equivalent Circuits of RF MOSFET’s 61
4.3 Parameter Extraction 64
4.3.1 Extraction of Extrinsic Parasitic Components in the Equivalent circuit of Cold MOSFET’s 64
4.3.2 Extraction of Components in the Equivalent Circuit of MOSFET’s in Linear Region 68
4.3.3 Extraction of intrinsic components in saturation region 69
4.4 Results and Discussions 72
4.4.1 Extractied Results of Cold Devices 73
4.4.2 Extracted Results of Devices Linear Region 74
4.4.3 Extracted Results of Saturation Devices 76
4.5 Summary 77
Chapter 5 Verification of Small-Signal Equivalent Circuit Model 135
5.1 Motivation 135
5.2 Simulation of the Equivalent Circuits 135
5.3 Results and Discussions 136
5.4 Summary 139
Chapter 6 Conclusion and Suggestions for Future Works 157
6.1 Conclusion of This Study 157
6.2 Suggestions for Future Works 158
References 159
Publication List 163
[1] J. E. Lilienfeld, U.S. Patent 1,745,175, 1930.
[2] W. Shockley and G. L. Pearson, “Modulation of Conductance of Thin Films of Semiconductors by Surface Charges,” Phy. Rev., 74, 232, 1948
[3] D.Kahng and M. M. Atalla, “Silicon-Silicon Dioxide Field Induced Surface Devices,” IRE Solid-State Device Res. Conf., Carnegie Institute of Technology, Pittsburgh, Pa., 1960.
[4] D. Kahng, “A Historical Perspective on the Development of MOS Transistors and Related Devices,” IEEE, Trans., Electron Devices, ED-23, 655, 1976
[5] T. Cho, E. Dukatz, M. Mack, D. MacNally, M. Maringa, S. Mehata, C. Nilson, L, Plouvier, and S. Rabii, “ A Single-Chip CMOS Direct-Conversion Transceiver for 900MHz Spread-Spectrum Digital Cordless Phones,” Int, Solid-State Circuit Conf., 1999, p.228-229
[6] J. Rudell, J. Ou, T. Cho, G. Chien, F. Brianti, J. Weldon, and P. Gray, “ A 1.9 GHz Wide-Band IF Double Conversion CMOS Integrated Receiver For Cordless Telephone Applications,” Int. Solid-State Circuits Conf., 1997, p.304-305.
[7] A. Rofougaran, J. Y-C. Chang, M. Rofougaran, and A. Abidi, “ A 1GHz CMOS RF Front-End IC for a Direct-Conversion Wireless Receiver,” IEEE, J. Solid-State Circuits, Vol.31, July 1996, p.880-889.
[8] M. B. Das, “High frequency network properties of MOS transistors including the substrate resistivity effects,” IEEE Trans. Electron Devices, Vol. Ed-16, No.12, Dec. 1969, p.1049-1069.
[9] W. Liu, R. Gharpurey, M. C. Chang, U. Erdogan, R. Aggarwal, and J. P. Mattia, “ RF MOSFET modeling accounting for distributed substrate and channel resistances with emphasis on the BSIM3v3 SPICE model,” Int. Electron Devices Meeting, 1997, p.309-312.
[10] J.J. Ou, X. Jin, I. Ma, C. Hu, and P.R. Gray, “CMOS RF modeling for GHz communication IC’s” IEDM, 1998, 94-95.
[11] S.F. Tin, A.A. Osman, K. Mayaram, and C. Hu, “ A simple subcircuit extension of the BSIM3V3 model for CMOS RF design,” IEEE, J. Solid-State Circuits, Vol.35, no.4, Apr. 2000, 612-624.
[12] D.R. Pehlke, M. Schroter, A. Burstein, M. Matloubian, and M.F. Chang, “High-frequency application of MOS compact models and their development for scalable RF model libraries,” Custom Integrated Circuits Conf., 1998, p.219-222.
[13] Y. Ge, and K. Mayaram, “ A Comparative analysis of CMOS Low Noise Amplifiers for RF Applications,” IEEE Proc. ISCAS 98, Vol.4, 1998, pp. 349-352.
[14] X. Li, H.S. Kim, M. Ismail and H. Olsson, ”A Novel Design Approach for GHz CMOS Low Noise Amplifiers,” IEEE RAWCON 99, 1999, pp. 285-288.
[15] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Generating All Two-MOS-Transistor Amplifiers Leads to New Wide-Band LNAs,” IEEE Journal of Solid-State Circuits, Vol. 36, No.7 pp. 1032-1040 July 2001.
[16] J. Martinez-Castillo, A. Diaz-Sanchez and M. Linares-Aranda, “Differential Transimpedance Amplifiers for Communications Systems Based on Common-Gate Topology,” IEEE ISCAS 2002, Vol.2, 2002, pp. 97-100.
[17] G. Gonzalez, “Microwave Transistor Amplifiers Analysis and Design,” 2nd ed., New Jersey: Prentice Hall, 1996, pp. 60-61.
[18] F. Sischka, “IC-CAP Modeling Reference,” Agilent Technologies, 2000, pp. 3_49-3_51.
[19] D.C. Benson, Y. Xuan, J. He, C.M. Lin, C.R. Hodges, and E. A. Logan, “Integrated passive components for RF applications,” IEEE Wireless Communication Conf., 1997, 175-180.
[20] D. Lovelace, J. Costa, and N. Camilleri, “Extracting small-signal parameters of silicon MOSFET transistors,” IEEE Trans. Microwave Theory and Techniques Symp., 1994, p.865-868.
[21] C.E. Biber, M.L. Schmatz, T. Morf, U. Lott, and W. Bachtold, “A nonlinear microwave MOSFET model for Spice simulators,” IEEE, Trans. Microwave Theory and Techniques, Vol.46, no.5, May, 1998, p.604-610.
[22] R. Sung, P. Bendix, and M.B. Das, “Extraction of high-frequency equivalent circuit parameters of submicron gate-length MOSFET’s,” IEEE Trans. Electron Devices, vol.45, no.8, Aug. 1998, p.1769-1775.
[23] S.H.M. Jen, C.C. Enz, D.R. Pehlke, M. Schroter, and B.J. Sheu, ”Accurate Modeling and parameter extraction fro MOS transistors valid up to 10 GHz,” IEEE Tran. Electron Devices, vol.46. No.11, PP.2217-2227, Nov. 1999.
[24] A. Ferrero, U. Pisani, “Two-Port Network Analyzer Calibration Using an Unknown “thru””, IEEE Microwave and Guided Wave Letters, Vol.2, No.12, Dec 1992.
[25] S. Basu, L. Hayden, “An SOLR Calibration for Accurate Measurement of Orthogonal on-wafer DUTs”, pp. 1335-1338, 1997 IEEE MTT-S Digest.
[26] Y. Cheng et al., ”A physical and scalable BSIM3V3 IV model for analog/digital circuit simulation,” IEEE Trans. Electron Devices, Vol.44, p.277-287, Feb, 1997.
[27] Mos9 manual, http://www.semiconductors.philips.com/Philips_Models.
[28] Y. Cheng, M. Schroter, C. Enz, M. Matloubian and D. Pehlke, “RF modeling Issue of deep-submicron MOSFET’s for circuit design,” Proc. of the IEEE Int. Conf. On Solid-State and Integrated Circuit Technology, p.416-419, Otc. 1998.
[29] C.C. Enz, Y. Cheng, “MOS transistor modeling for RF IC Design,” IEEE Tran. Solid-State Circuits, vol.35, No.2, Feb. 2000.
[30] C.C. Enz, “An MOS transistor model for RF IC Design Valid in all regions of operation,” IEEE Tran. Microwave Theory and Techniques, vol. 50, No. 1, Jan. 2002.
[31] W. Liu, R. Gharpurey, M.C. Chang, U. Erdogan, R. Aggarwal, and J.P. Mattia, “RF MOSFET modeling accounting for distributed substrate and channel resistances with emphasis on the BSIM3v3 SPICE model,” Technical Digest of international Electron Device Meeting, p.309-312, Dec, 1997.
[32] Y.P. Tsividis, “Operation and Modeling of the MOS Transistor”, New York: McGraw-Hill, 1988.
[33] J. Han, M. Je, and H. Shin, “A simple and accurate method for extracting substrate resistance of RF MOSFETs” IEEE Electron Device Lett., Vol. 23, NO. 7, pp. 434-436, July 2002.
[34] M. Je, and H. Shin, “Gate bias dependent of substrate signal coupling effect in RF MOSFETs” IEEE Electron Lett. VOL. 24, NO. 3, pp.183-185, March 2003.
[35] Y. Cheng, and M. Matloubian “On the high-frequency characteristics of substrate resistance in RF MOSFETs” IEEE Electron Lett. VOL. 21, NO. 12, pp.604-606, Dec. 2000.
[36] X. Jin, J. J. Ou, C. H. Chen, W. Liu, and M. J. Deen, “An effective gate resistance model for CMOS RF and noise modeling,” IEDM Tech. Dig., pp. 961-964, 1998.
[37] H. W. Lin, S. S. Chung, S. C. Wong, and G. W. Huang, “An accurate RF CMOS Gate Resistance Model Compatible with HSPICE,” Proc. IEEE 2004 Int. Conf. Microelectronic Test Structure, Vol. 17, pp.227-230, March 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top