跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 18:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡明衡
研究生(外文):Ming-Heng Tsai
論文名稱:1.25億位元/每秒資料回路電路設計與實現
論文名稱(外文):Design and Realization of a Clock and Data Recovery Circuit
指導教授:羅正忠羅正忠引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:61
中文關鍵詞:資料回復時脈與資料
外文關鍵詞:CDRClock and Data RecoveryClock and Data
相關次數:
  • 被引用被引用:0
  • 點閱點閱:398
  • 評分評分:
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
隨著互補式金氧半製程技術的發展,以及處理器運算能力的快速提昇,提示著用以傳輸資訊的寬頻資料連結越來越顯得需要。在許多的應用中,比如說電腦內部、電腦與電腦間和電腦與週邊間的介面,這樣的連結通常是一個很重要的部分。為了克服在資料傳輸過程中由各種雜訊源所導致的訊號完整性問題,接收器在整個高速連結效能的表現中扮演了一個重要的角色,而其中最複雜的部分就是資料回復電路的設計。傳統上,GaAs 和Si bipolar 等製程都較常被使用在這樣高速電路,然而,由於互補式金氧半製程本身低成本、低功率、高度整合的優勢,目前深次微米互補式金氧半製程也已經被考慮使用在這些高速電路。
論文主題在於使用標準互補式金氧半製程實現一個雙回路系統1.25Gb/s時脈資料回復電路。內容可分為五章,第一章為簡介,第二章以時脈資料回復電路的基本原理作為開始。然後,在設計系統參數的複雜取捨將被討論並且也討論所建議的架構工作原理,第三章描述使用一些電路可支援高效能、低成本、短的設計時間和可量測的設計與應用,此方法可符合1.25Gb/s 的輸入資料速率。第四章介紹超大型積體電路實行的注意事項,第五章總結此論文。
Table of the contents

Abstract(Chinese) i
Abstract(English) ii
Acknowledgement iv
Table of Contents v
List of Tables vii
List of Figures viii


Chapter 1 Introduction
1.1 Motivation 1
1.2 Fiber-Optic Transceiver 2
1.3 Data Format 3
1.4 Timing Margin Analysis 4
1.5 Thesis Overview 5
Chapter 2 Clock and Data Recovery Architectures
2.1 Principle of Operation 6
2.2 CDR Fundamental 8
2.2.1 Frequency Detector 9
2.2.2 Phase Detector 15
2.2.3 Voltage-Controlled Oscillator 16
2.2.4 Loop Filter 17
2.3 Loop Filter 18
2.3.1 Approximated Frequency Response with 1st-order RC lowpass filter 22
2.4 CDR Parameter Design 24
Chapter 3 A 1.25 Gb/s Clock and Data Recovery Design
3.1 Introduction 26
3.2 Circuit Description 26
3.2.1 Input and Output Interface 26
3.2.1.1 Preamplifier 27
3.2.1.2 Output Driver 30
3.2.2 Frequency Detector 31
3.2.3 Phase Detector 33
3.2.4 Charge Pump 35
3.2.4.1 Charge Pump 1 35
3.2.4.1 Charge Pump 2 37
3.2.5 Voltage Controlled Oscillator 39
3.2.5.1 The Fundamental of VCO 39
3.2.5.2 Practical Design 46
3.3 System Simulation Result 49

Chapter 4 VLSI Implementation
4.1 Layout 52
Chapter 5 Conclusion 55
Bibliography 57
Vita 61






List of Tables


Table 2-1 Logic table of the half-rate DQFD 14
Table 3-1 Comparison between LC-tank oscillator and ring oscillator 40
Table 4-1 Performance Summary 54






























List of Figures


Fig. 1-1 Typical Fiber-Optic Transceiver 2
Fig. 1-2 NRZ data 3
Fig. 1-3 Received Data Eye 5
Fig. 2-1 Half-rate CDR architecture 7
Fig. 2-2 A Data Regeneration (a) scheme, (b) timing diagram 8
Fig. 2-3 (a) Schematic of half-rate DQFD (b) Combinational logics 10
Fig. 2-4 State representation 11
Fig. 2-5 Timing diagram for (a) slow periodic data (b) fast periodic data 12
Fig. 2-6 A three-state logic of the half-rate DQFD 13
Fig. 2-7 Illustration of the VCO (a) model of the oscillator (b)characteristic 17
Fig. 2-8 A second-order low-pass filter 18
Fig. 2-9 Model of the CDR 19
Fig. 2-10 Bode plot of the open-loop transfer function 20
Fig. 2-11 Second-order bang-bang loop schematic 21
Fig. 2-12 The close-loop frequency response of the CDR 23
Fig. 2-13 The close-loop transient step response of a CDR 24
Fig. 3-1 Schematic of preamplifier 27
Fig. 3-2 Frequency response of the preamplifier 29
Fig. 3-3 Hysteresis window of the preamplifier 29
Fig. 3-4 The output of preamplifier with input of 27-1 PRBS 30
Fig. 3-5 Output Driver by the source follower 31
Fig. 3-6 Schematic of TSPC DFF 32
Fig. 3-7 Schematic of the XOR gate 32
Fig. 3-8 (a) Schematic of the phase detector (b) Phase Detector characteristics 34
Fig. 3-9 Schematic of the charge pump 1 35
Fig. 3-10 (a) Charge-pump suffering from charge sharing (Type A) (b) Charge removal transistors eliminate charge sharing (Type B) 36
Fig. 3-11 (a) Original current reuse topology (b) Final current reuse topology 38
Fig. 3-12 Schematic of the charge-pump 2 in this work 38
Fig. 3-13 Schematic of the four stages VCO and the delay cell 41
Fig 3-14 I-V curve of the symmetric load 41
Fig. 3-15 Schematic of self-biased replica-feedback bias generator 43
Fig. 3-16 Frequency response of the self-biased replica-feedback bias generator 44
Fig. 3-17 Schematic of differential-to-single-ended converter with 50% duty cycle 45
Fig. 3-18 Schematic of the delay cell with additional capacitive loads 46
Fig. 3-19 Schematic of linearization circuit 47
Fig. 3-20 Transfer curve of the linear circuit 47
Fig 3-21 The transfer curve of the VCO (a) without additional capacitive loads and linearization circuit (b) without linearization circuit (c) with both trimming circuits 49
Fig. 3-22 Acquisition process for initial fvco > desired frequency 50
Fig. 3-23 Acquisition process for initial fvco < desired frequency 50
Fig. 3-24 Retimed data and retimed clock 51
Fig. 3-25 jitter of the VCO output for input data with 27-1 PRBS 51
Fig. 4-1 Chip layout of the CDR 53
[1] M. J. Reizenman, “Optical nets brace for even heavier traffic, ” IEEE Spectr., pp. 44-45, Jan. 2001.
[2] N. Miki and K. Okada, “Access flexibility with passive double star system,” IEEE 5th Conf. Opt./Hybrid Access Network Proc,. 1993.
[3] K. Yukimatsu and Y. Shimazu, “Optical interconnections in switching system,” IEICE Trans. Electron., vol. E77-C, no. 1, pp. 2-8, Jan. 1994.
[4] R Farjad-Rad, “A CMOS 4- PAM multi-Gbps serial link transceiver,” Ph.D. Thesis, Stanford University, 2000.
[5] J. Savoj and B. Razavi, “A 10-Gb/s CMOS clock and data recovery circuit with a half-rate linear phase detector,” IEEE J. Solid-State Circuits, vol. 36, pp. 761-768, May 2001.
[6] J. Savoj and B. Razavi, “A 10-Gb/s CMOS clock and data recovery circuit with a half-rate binary phase/frequency detector,” IEEE J. Solid-State Circuits, vol. 38, pp. 13-21, Jan 2003.
[7] J. D. H. Alexander, “Clock recovery from random binary signals,” Electron Lett., Vol. 11, pp. 541-542, 1975.
[8] M. Rau, T. Oberts, R. Lares, A. Rothermel, R. Schweer, and N. Menoux, ”Clock/data recovery PLL using half-frequency clock,“ IEEE J. Solid-State Circuits, vol. 32, pp. 1156-1160, July 1997.
[9] R. J. Yang, S. P. Chen, and S. I. Liu, “A 3.125-Gb/s clock and data recovery circuit for the 10-Gbase-LX4 Ethernet,” IEEE J. Solid-State Circuits, vol. 39, pp. 1356-1360, Aug 2004.
[10] S. J. Lee, S.M. Park, and H. J. Yoo, “A 4-Gb/s CMOS clock and data recovery circuit using 1/8-rate clock technique,” IEEE J. Solid-State Circuits, vol. 38, pp. 1213-1219, July 2003.
[11] S. H. Lee, M. S. Hwang, Y. Choi, S. Kim, Y. Moon, B. J. Lee, D. K.Jeong, W. Kim, Y. J. Park, and G. Ahn, “A 5 Gb/s 0.25 μm CMOS jitter-tolerant variable-interval oversampling clock/data recovery circuit,” IEEE J. Solid-State Circuits, vol. 37, pp. 1822–1830, Dec. 2002.
[12] J. E. Rogers and J. R. Long, “A 10 Gb/s CDR/DEMUX with LC delay line VCO in 0.18-um CMOS,” IEEE J. Solid-State Circuits, vol. 37, pp.1781–1789, Dec 2002.
[13] A. Pottbacker, U. Langmann, and H. Schreiber, “A Si bipolar phase and frequency detector IC for clock extraction up to 8 Gb/s,” IEEE J. Solid- State Circuits, vol. 27, pp. 1747–1751, Dec. 1992.
[14] B. Stilling, “Bit rate and protocol independent clock and data recovery,” Electron. Lett., vol. 36, pp. 824–825, Apr. 2000.
[15] J. Savoj and B. Razavi, “A 10-Gb/s CMOS clock and data recovery circuit,” Digest of symposium on VLSI Circuits, pp. 136-139, 2000.
[16] K. Nakaruma, M. Fukaishi, H. Abiko, A. Matsumoto and M. Yotsuyanagi, “A 6Gbps CMOS phase detecting DEMUX module using half-frequency clock,” Digest of symposium on VLSI Circuits, pp. 196-197, 1998.
[17] J. Savoj and B. Razavi, “High-speed CMOS circuits for optical receivers,” Kluwer Academic Publishers, Boston 2001.
[18] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
[19] J. Maneatis, “Low-jitter process-independent DLL and PL base on self-biased techniques,” IEEE J. Solid- State Circuits, vol. 31, no. 11, pp. 1723–1732, Nov. 1996.
[20] C. R. Hogge, “ A self-correcting clock recovery circuit,” IEEE J. Lightwave Tech., vol. 3, pp. 1312-1314, Dec. 1985.
[21] K. Vichienchom and W. Liu, ”Analysis of phase noise due to bang-bang phase detector in PLL-based clock and data recovery circuits,” in Proc. ISCAS 2003, vol. 1, pp. 617-620, May 2003.
[22] M. Ramezani, C. Andre, and T. Salama, “Analysis of a half-rate bang-bang phase-locked-loop,” IEEE Trans. Circuits and Systems II, vol. 49, pp. 505-509, July 2002.
[23] M. Ramezani, C. Andre, and T. Salama, “Jitter analysis of a PLL-based CDR with a bang-bang phase detector,” IEEE Trans. Circuits and Systems, vol. 3 pp. 393-396, Aug. 2002.
[24] R. Walker, C. Cheryl, and L. Stout, “A two-chip 1.5 GBd serial link interface,” IEEE J. Solid- State Circuits, vol. 27, pp. 1805–1811, Dec. 1992.
[25] R. Walker, “Clock and data recovery for serial digital communication,” BCTM Tutorial, Sept. 27, 1998.
[26] K. Kishine, N. Ishihara, and H. Ichino, “Techniques for widening lock and pull-in ranges and suppressing jitter in clock and data recovery ICs,” IEICE Trans. Electron., vol. E84-C, no. 4, April 2001.
[27] A. Boni, A. Pierazzi, D. Vecchi, “LVDS I/O interface for Gb/s-per-pin operation in 0.35-um CMOS,” IEEE J. Solid- State Circuits, vol. 36, no. 4, pp. 706-711, April 2001.
[28] F. Svelto, S. Deantoni, G. Montagna, and R. Castello, “Implementation of a CMOS LNA plus mixer for GPS applications with no external components,” IEEE trans. On VLSI systems, vol. 9, no.1, Feb. 2001.
[29] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE J. Solid- State Circuits, vol. 24, no. 1, pp. 62-70, Feb. 2001.
[30] P. John, Uyemura, CMOS Logic Circuit Design, by Kluwer Academic Publishers, 1999.
[31] J. Maneatis, “precise delay generation using coupled oscillators,” IEEE J. Solid- State Circuits, vol. 28, no. 12, pp. 1273-1282, Dec. 1993.
[32] M. Johnson and E. Hudson, “A variable delay line PLL for CPU –coprocessor synchronization,” IEEE J. Solid- State Circuits, vol. SC-23, no. 5, pp. 1218-1223, Dec. 1993.
[33] P. Larsson and J. Y. Lee, “A 400 Mw 50-380 MHz CMOS programmable clock recovery circuit,” in Proc. IEEE ASIC Conf. Exhibit, 1995, pp. 271-274.
[34] E.J. Hernandez and A. D. Sanchez, “A novel CMOS charge-pump circuit with positive feedback for PLL applications,” Electronics, Circuits and Systems, ICECS 2001. The 8th IEEE International Conference, Vol. 1, pp. 349-352, Sept. 2001.
[35] R. Wang and R. Harjani, “Partial positive feedback for gain enhancement of low power OTA’s,” Analog Integrated Circuits and Signal Proc. Vol.8. Kluwer Academic, 1995, pp. 20-35.
[36] R. Gregorian, Introduction to MOS Op-Amps and Comparator. John Wiley and Sons. 1999.
[37] Sun-Ping Chen, “Design and implementation of a 3.125-Gb/s Clock and data recovery circuit,” M.S. Thesis, National Taiwan University, Department of Electrical Engineering, June 2002.
[38]













14. J. Maneatis, “precise delay generation using coupled oscillators,” IEEE J. Solid- State Circuits, vol. 28, no. 12, pp. 1273-1282, Dec. 1993.

16.Yu-Tang Hsieh, “CMOS Precise delay generator and its application in timing recovery,” M.S. Thesis, National Chiao-Tung University, Department of Electronics Engineering, June 2000.

24.A. Boni, A. Pierazzi, D. Vecchi, “LVDS I/O interface for Gb/s-per-pin operationin 0.35-um CMOS,” IEEE J. Solid- State Circuits, vol. 36, no. 4, pp. 706-711, April 2001.

28.Sun-Ping Chen, “Design and implementation of a 3.125-Gb/s Clock and data recovery circuit,” M.S. Thesis, National Taiwan University, Department of Electrical Engineering, June 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top