跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 16:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃鐘逸
研究生(外文):Chung-I Huang
論文名稱:掃描式電場力顯微術於氮化鎵島狀結構之研究
論文名稱(外文):Studies of GaN Islands by Scanning Electric Force Microscopy
指導教授:陳衛國
指導教授(外文):Wei-Kuo Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:70
中文關鍵詞:原子力顯微術電場力顯微術電場力氮化鎵圓盤狀島狀結構表面電位顯微術功函數
外文關鍵詞:AFMEFMelectric forceGaNdisk-like islandSKMwork function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,經由掃描式電場力顯微術(EFM)的原理,我們發展出一個模型。利用這個模型,我們可以求出所使用的原子力顯微術探針的表面功函數絕對值,並在不同探針與樣品間距,量測以基頻頻率ω和2倍頻率2ω振盪的受力(分別以Fω和F2ω表示)的映像來計算探針與樣品表面靜電荷之間的庫侖力。經過測定功函數後的探針可以用來量測其他樣品的表面功函數。EFM的實驗結果顯示,在圓盤狀氮化鎵島狀結構的樣品上,Fω和F2ω的映象同樣具有很好的解析表面結構的能力,我們還發現島狀結構區域的Fω 和F2ω受力強度較平坦處小,而且島狀結構高度愈高,受力愈小。我們也分別計算在矽晶圓與氮化鎵島狀結構表面上的靜電荷與探針之間以ω頻率振盪的庫侖力大小,發現其作用模式在矽晶圓上較適合用圓錐體模型來解釋,在氮化鎵島狀結構上的實驗結果用點電荷對圓盤的模型來解釋較佳,我們將這兩種差異歸因於樣品表面靜電荷的區域相對於探針的尺寸大小所造成的電場分佈不一樣所致。在無窮大平板(如本實驗的矽晶圓)上,表面靜電荷所生成的電場是均勻分佈的,作用在探針上是影響探針整體,所以可用圓錐體模型來解釋實驗結果。但在圓盤狀氮化鎵島狀結構上的靜電荷所生成的電場並不均勻且隨高度增加其強度會快速減少,在計算探針與氮化鎵島狀結構上的靜電荷之間以ω頻率振盪的庫侖力時,探針尖端的球體是主要的受力位置,所以可以用點電荷對圓盤的模型來解釋其實驗結果。
We had developed a model based on the equations related to the principle of scanning electric force microscopy (EFM). By this model, we can obtain the surface work function of the tip we used in our atomic force microscopy (AFM) system and calculate the ω-term Coulombic force between the tip and the surface electrostatic charge (ESC) on the sample in the ω-term and 2ω-term force (signed Fω and F2ω, respectively) mappings at different tip-sample distances. The calibrated value of tip work function can be used to characterize the surface work function of other samples. The EFM results show that the Fω and F2ω force mappings on disk-like GaN islands can be well-resolved. The intensities of the electric forces Fω and F2ω on the region of GaN islands are comparatively lower as respect to that of the plane surface. The higher the island is, the lower the value of intensity is. We can also calculate the ω-term Coulombic force between the tip and the surface ESC on Si wafer and that on the disk-like GaN island, respectively. We found that the reactive Coulombic force can be interpreted by the cone model on the Si wafer, and by the charged point-disk model on the disk-like GaN island, respectively. We believed that such discrepancy can be attributed to the difference of electric field distribution resulted from the dimension of the ESC distribution region on the sample surface as compared with the tip. The uniform electric field acting on all part of the tip above the infinite plane (such as the Si wafer) results in using the cone mode to interpret the experimental results. But, in the single disk-like GsN island whose electric field resulted from ESC on surface is not uniform and decreases rapidly with increasing height. The sphere of the tip is the main position suffered the ω-term Coulombic force between the tip and the surface ESC on the single disk-like GaN island. As a result, we can use the charged point-disk model to interpret the ω-term Coulombic force between the tip and the ESC purely on the single disk-like GaN island.
Acknowledgment
Abstract (Chinese Version)…………………………………………………….ii
Abstract (English Version)………………………………………………….... iv
Chapter 1. Introduction……………………………………………………......1
Chapter 2. Theoretical Background…...……………………………………...5
2.1 Atomic Force Microscopy (AFM)………………………………..5
2.2 Scanning Electric Force Microscopy (EFM)……………………..9
2.3 Scanning Kelvin Probe Microscopy (SKM)…………………….17
Chapter 3. Experiments………………………………………………………18
3.1 Sample Preparation………………………………………………18
3.2 Experiment Procedure…………………………………………...21
3.3 Analysis Instruments…………………………………………….24
Chapter 4. Results and Discussion…………………...………………………26
4.1 Model…………………………………………………………….26
4.2 Calibration of Work Function of Tip…………………………….29
4.3 ω-FESC,tip from Plane on Sample……………………...………….35
4.4 Morphology and Force Mapping of GaN Island………………...41
4.5 ω-FESC,tip from the Single GaN Island………………………...….47
Chapter 5. Conclusions………..………………………….…………………..65
Appendix………………………………………………………………………67
Reference………………………………………………………………………68
[1]P. Girard, P. Cadet, M. Ramonda, N. Shmidt, A. N. Usikov, W. V. Lundin, M. S. Dunaevskii, and A. N. Titkov, Phys. Stat. Sol. (a) 195, 508 (2003).
[2]F. Muller, A. D. Muller, M. Hietschold, and S. Kammer, Meas. Sci. Technol. 9, 734 (1998).
[3]K. Wapner, B. Schoenberger, M. Stratmann, and G. Grundmeier, J. Electrochem. Soc. 152, E114 (2005).
[4]T. Yamauchi, M. Tabuchi, and A. Nakamura, Appl. Phys. Lett. 84, 3834 (2004).
[5]A. Efimov, and S. R. Cohen, J. Vac. Sci. Technol. A 18, 1051 (2000).
[6]G. Koley and M. G. Spencer, Appl. Phys. Lett. 78, 2873 (2001).
[7]T. Mizutani, T. Usunami, S. Kishimoto and K. Maezawa, Jpn. J. Appl. Phys. 38, L767 (1999).
[8]T. Takahashi, T. Kawamukai, S. Ono, T. Noda, and H. Sakaki, Jpn. J. Appl. Phys. 39, 3721 (2000).
[9]S. Ono, M. Takeuchi, and T. Takahashi, Appl. Phys. Lett. 78, 1086 (2001).
[10]Y. Eguchi, S. Kishimoto, and T. Mizutani, Jpn. J. Appl. Phys. 40, L589 (2001).
[11]S. Ono, M. Takeuchi, T. Noda, and T. Takahashi, Jpn. J. Appl. Phys. 42, 4869 (2003).
[12]B. S. Simpkins, D. M. Schaadt, E. T. Yu, and R. J. Molnar, J. Appl. Phys. 91, 9924 (2002).
[13]J. W. P. Hsu, H. M. Ng, A. M. Sergent, and S. N. G. Chu, Appl. Phys. Lett. 81, 3579 (2002).
[14]Y. Rosenwaks, R. Shikler, T. Glatzel, and S. Sadewasser, Phys. Rev. B 70, 085320 (2004).
[15]J. Jiang, T. D. Krauss, and L. E. Brus, J. Phys. Chem. B 104, 11936 (2000).
[16]B. D. Huey and D. A. Bonnell, Solid State Ionics 131, 51, (2000).
[17]G. Koley and M. G. Spencer, J. Appl. Phys. 90, 337 (2001).
[18]B. D. Terris, J. E. Stern, D. Rugar, and H. J. Mamin, Phys. Rev. Lett. 63, 2669 (1989).
[19]H. Bluhm, A. Wadas, R. Wiesendanger, K.-P. Meyer, and L. Szczesniak, Phys. Rev. B 55, 4 (1997).
[20]R. M. Nyffenegger, R. M. Penner, and R. Schierle, Appl. Phys. Lett. 71, 1878 (1997).
[21]P. M. Bridger, Z. Z. Bandic, E. C. Piquette, and T. C. McGill, Appl. Phys. Lett. 74, 3522 (1999).
[22]J. J. O’Shea, M. D. Camras, D. Wynne, and G. E. Hofler, J. Appl. Phys. 90, 4791 (2001).
[23]See, for example, D. Bonnell, ed., Scanning probe microscopy and spectroscopy: theory, techniques, and applications, 2nd ed. Wiley-VCH, New York, 2001.
[24]J. W. Hong, S.-I. Park, and Z. G. Khim, Rev. Sci. Instrum. 70, 1735 (1999).
[25]J. W. Hong, K. H. Noh, S.-I. Park, S. I. Kwun, and Z. G. Khim, Phys. Rev. B 58, 5078 (1998).
[26]F. Saurenbach and B. D. Terris, Appl. Phys. Lett. 56, 1703 (1990).
[27]O. Cherniavskaya, L. Chen, V. Weng, L. Yuditsky, and L. E. Brus, J. Phys. Chem. B 107, 1525 (2003).
[28]T. D. Krauss, S. O’Brien, and L. E. Brus, J. Phys. Chem. B 105, 1725 (2001).
[29]Z.-Y. Wang, J.-B. Bao, H.-H. Zhang, and W.-M. Guo, Appl. Phys. Lett. 81, 1300 (2002).
[30]B. J. Rodriguez, W.-C. Yang, R. J. Nemanich, and A. Gruverman, Appl. Phys. Lett. 86, 112115 (2005).
[31]J. W. Hong, D. S. Kahng, J. C. Shin, H. J. Kim, and Z. G. Khim, J. Vac. Sci. Technol. B 16, 2942 (1998).
[32]G. M. Sacha, and J. J. Saenz, Appl. Phys. Lett. 85, 2610 (2004).
[33]J. Colchero, A. Gil, and A. M. Baro, Phys. Rev. B 64, 245403 (2001).
[34]G. Koley, M. G. Spencer, and H. R. Bhangale, Appl. Phys. Lett. 79, 545 (2001).
[35]P. Girard, A. N. Titkov, M. Ramonda, V. P. Evtikhiev, and V. P. Ulin, Appl. Surf. Sci. 201, 1 (2002).
[36]P. Girard, Nanotechnology 12, 485 (2001).
[37]The work function of i-Si is calculated from the equation where Φ, χ, and Eg represent the work function, electron affinity and bandgap energy, respectively. The latter two values are 4.01eV and 1.12eV, respectively. (refered to the Table B.4 in Ref. 38) So, we adopted 4.6eV as the work function of i-Si, which is figure out by the equation above.
[38]D. A. Neamen, Semiconductor physics and devices: basic principles, 3rd ed., p.328, McGraw-Hill, New York, 2003.
[39]S. Patil, A. V. Kulkarni, and C. V. Dharmadhikari, J. Appl. Phys. 88, 6940 (2000).
[40]S. Belaidi, P. Girard, and G. Leveque, J. Appl. Phys. 81, 1023 (1997).
[41]H. W. Hao, A. M. Baro, and J. J. Saenz, J. Vac. Sci. Technol. B 9, 1323 (1991).
[42]See, for example, D. K. Cheng, Field and wave electromagnetics, 2nd ed., p.98-99, Addison-Wesley, Reading Massachusetts, 1992.
[43]G. M. Sacha, A. Verdaguer, J. Martinez, J. J. Saenz, D. F. Ogletree, and M. Salmeron, Appl. Phys. Lett. 86, 123101 (2005).
[44]S. Watanabe, K. Hane, T. Ohye, M. Ito, and T. Goto, J. Vac. Sci. Technol. B 11, 1774 (1993).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 郭國禎(1986)我國大專學生求助需欲與求助態度之調查研究。輔導學報,9期,165-203頁。
2. 孫敏華(1995)軍中生活壓力與身心健康之研究。中華心理衛生學刊,8卷,2期,59-74頁。
3. 梁成明、羅新興(2001)國軍志願役軍官工作壓力之研究。國防管理學報,22卷,2期,1-13頁次。
4. 紀文祥(1979)國中以上學生對輔導人員的人格期望及求輔導態度與輔導方式偏好之研究。政大教育與心理研究,3期,141-204頁。
5. 林健陽、賴擁連(2002)台灣地區毒品犯戒治處遇效能之實證研究。公共事務評論,3卷,1期,37-68頁。
6. 陳玉蘭(1990)電話諮商、函件輔導與小團體諮商之實施。教育文粹,20期,218-229頁。
7. 陳靜怡(2004)社區犯罪防治網路理論之意蘊與其實證分析。公共事務評論,5卷,2期,25-51頁。
8. 許朝傑(2002)學生升學選擇意願行為之研究-計劃行為理論之模式應用。公共事務評論,3卷,2期,143頁。
9. 程小蘋、賀孝銘、李華璋(1996)彰化師大學生輔導印象之調查研究。輔導學報,19期,29-59頁。
10. 程玲玲(1987)台灣大學生心理求助歷程之探討。中華心理衛生學刊,3卷,1期,125-138頁。
11. 程玲玲(1989)大學生的困擾及主觀知覺、歸因方式、因應策略與心理求助。法商學報,23期,277-321頁。
12. 廖鳳池(1992)多重文化諮商技術訓練模式評介。諮商與輔導,77期,2-9頁。
13. 錢淑芬(1992)軍隊組織的領導與輔導之研究。復興崗學報,48期,363頁。