跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/13 08:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:金國生
研究生(外文):Kuo-Sheng Chin
論文名稱:具精確頻寬之平行耦合微帶線帶通濾波器合成方法
論文名稱(外文):Synthesis of Parallel-Coupled Microstrip Bandpass Filters with Accurate Bandwidths
指導教授:郭仁財
指導教授(外文):Jen-Tsai Kuo
學位類別:博士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:79
中文關鍵詞:平行耦合線帶通濾波器最大平坦響應柴比雪夫響應介入損耗函數微帶線濾波器
外文關鍵詞:Parallel-coupled bandpass filtersMaximally flat responsesChebyshev responsesInsertion loss functionsMicrostrip filters
相關次數:
  • 被引用被引用:1
  • 點閱點閱:362
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:0
在本論文,作者提出平行耦合微帶線帶通濾波器之新合成方法,可獲取精確頻寬。傳統上,一段平行線耦合級係以兩段1/4波長傳輸線及中間夾一個導納轉換器來等效,由於導納轉換器並不具隨頻率改變之特性,因此此種等效模式僅在設計小頻寬時較為準確,當設計較大頻寬時,實際頻寬會明顯大幅縮減。為改善此問題,論文第一部份提出以頻帶邊緣等效取代中心頻率等效之觀念來修正傳統公式,以獲取較為精確之頻寬。更進一步地,論文第二部份提出以介入損耗函數來合成具有精確頻寬之平行耦合線帶通濾波器之方法。介入損耗函數可直接由耦合級串接之ABCD 矩陣推導得出,而不需使用含導納轉換器之等效電路,藉由與最大平坦函數及柴比雪夫函數比對係數,得出所需之合成公式。由於在某些嚴苛設計規格下,耦合線線寬及線距可能過窄難以實現,此時可運用合成公式提供之自由度適當選擇解答,放寬中間耦合級之尺寸,將困難移至兩端(輸入及輸出端)耦合級,並採用擇定饋入法(Tapped input)方式來實現端級。作者並實際合成數組大頻寬濾波器作為範例,以模擬及量測數據來與本文之理論計算結果做比較,證實此方法可行且頻寬相當精確。
In the thesis, authors propose the new synthesis methods of parallel-coupled microstrip bandpass filters (PCBPFs) with accurate bandwidth. In a conventional design, the equivalence of a coupled stage is established by using two quarter-wave transmission line sections with a J-inverter in between. Since the J-inverter is independent of frequency, the conventional equations are accurate only for filters with relatively narrow bandwidths. When a large bandwidth is designed, filters synthesized based on the conventional method will have a fractional bandwidth less than specification. In the first part of the dissertation, for recovering the bandwidth decrement, the correction �� = (��/2)(1 ± ��/2) is incorporated into the synthesis formulas to modify the conventional method. Furthermore, the insertion loss (IL) functions are derived for synthesis of PCBPFs with accurate bandwidth. The synthesis is based on the composite ABCD matrix of all coupled stages instead of modeling each stage with the J-inverter equivalent circuit. Synthesis equations are established by matching the coefficients of IL function with the maximally-flat and Chebyshev functions. The under-determined conditions leave several degrees of freedom in choosing the circuit dimensions. By properly utilizing these degrees of freedom, the problem resulted from the tight coupled-line dimensions can be resolved by gathering all difficulties to the end stages and employing tapped input/output to replace the end stages. Several filters are simulated, fabricated and measured to demonstrate the formulation and circuit synthesis. The measured results manifest very accurate bandwidths.
Reference

[1] Y. C. Yoon and R. Kohno, “Optimum multi-user detection in ultra-wideband (UWB) multiple-access communication systems”, in IEEE Int. Conf. Comm., pp. 812-816, 2002.
[2] D. P. Andrews and C. S. Aitchison, “Wide-band lumped-element quadrature 3-dB couplers in microstrip,” IEEE Trans. Microwave Theory Tech., pp. 2424-2431, Dec. 2000.
[3] J.-T. Kuo and E. Shih, “Wideband bandpass filter design with three line microstrip structures,” IEE Proceedings - Microwaves, Antennas and Propagation, vol.149, No.5, pp. 243-247, Oct. 2002.
[4] L. Zhu, H. Bu and K. Wu “Broadband and compact multi-pole microstrip bandpass filters using ground plane aperture technique,” IEE Proc. - Microwaves, Antennas Propagation, pp.71-77, Feb. 2002.
[5] C.-Y. Chang and T. Itoh, “A modified parallel-coupled filter structure that improves the upper stopband rejection and response symmetry,” IEEE Trans. Microwave Theory Tech., pp. 310-314, Feb. 1991.
[6] G. L. Matthaei, L. Young and E. M. T. Johns, Microwave Filters, Impedance Matching Networks, and Coupling Structures. Norwood MA: Artech House, 1980.
[7] D. M. Pozar, Microwave Engineering, 2nd ed., New York: John Wiley & Sons, 1998.
[8] J. M. Drozd and W. T. Joines, “Maximally flat quarter-wavelength- coupled transmission-line filters using Q distribution,” IEEE Trans. Microwave Theory Tech., vol. 45, pp.2100-2113, Dec. 1997.
[9] R. Levy, “Theory of Direct Coupled Cavity Filters,” IEEE Trans. Microwave Theory Tech., pp.340-348, June 1967.
[10] Zeland Software Inc., IE3D simulator, Jan. 1997.
[11] S. B. Cohn, “Parallel-coupled transmission-line resonator filters,” IRE Trans. Microwave Theory Tech., vol. MTT-6, pp.223~231, Apr. 1958.
[12] L. Zhu, W. Menzel, K. Wu, and F. Boegelsack “Theoretical characterization and experimental verification of a novel compact broadband microstrip bandpass filter,” Proc. of APMC2001, pp.625-628, 2001.
[13] K.-S. Chin, L.-Y. Lin and J.-T. Kuo, “New formulas for synthesizing microstrip bandpass filters with relatively wide bandwidths,” IEEE Trans. Microwave and Wireless Components Letters, vol.14, pp. 231-233, May 2004.
[14] W. W. Mumford, “Tables of stub admittances for maximally flat filters using shorted quarter-wave stubs,” IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp.695~696, Sept. 1965.
[15] E. G. Cristal, “Tapped-line coupled transmission lines with applications to interdigital and combline filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp.1007-1012, Dec. 1975.
[16] J. S. Wong, “Microstrip tapped-line filter design,” IEEE Trans. Microwave Theory Tech., vol. MTT-27, pp.44-50, Jan. 1979.
[17] K.-S. Chin and J.-T. Kuo, “Insertion loss function synthesis of maximally flat parallel-coupled line bandpass filters,” accepted for publication in the IEEE Trans. Microwave Theory Tech. (Sept. Issue of the 2005 IEEE MTT)
[18] K.-S. Chin and J.-T. Kuo, “Direct synthesis of parallel-coupled line bandpass filters with Chebyshev responses,” submitted to IEEE Trans. Microwave Theory Tech., May 2005.
[19] K.-S. Chin, L.-Y. Lin and J.-T. Kuo, "An improved formula for design of wideband parallel-coupled microstrip bandpass filters," in the Proceedings of 2003 Progress in Electromagnetics Research Symposium (PIERS), pp.72, Hawaii.
[20] K.-S. Chin and J.-T. Kuo, “Maximally flat parallel-coupled line filters using insertion loss function," accepted for publication in 2005 Cross Strait Tri-regional Radio Science and Wireless Technology Conference, 2005
[21] R. Levy, “New equivalent circuits for inhomogeneous coupled lines with synthesis applications,” IEEE Trans. Microwave Theory Tech., vol. 36, No. 6, pp.1087~1094, June 1988.
[22] R. Levy, “Tables of element values for the distributed low-pass prototype filter,” IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp.514~536, Sep. 1965
[23] L. Young, “Direct-coupled cavity filters for wide and narrow bandwidths,” IEEE Trans. Microwave Theory Tech., vol. MTT-11, pp.162~178, May 1963.
[24] M. Makimoto and S. Yamashita, “Bandpass filters using parallel-coupled stripline stepped impedance resonators,” IEEE Trans. Microwave Theory Tech., MTT-28, No.12, pp.1413-1417, Dec. 1980.
[25] K. Wada and O. Hashimoto, "Fundamentals of open-ended resonators and their application to microwave filters," IEICE Trans. Electron, vol. E83-C, No.11, pp. 1763-1775, Nov. 2000.
[26] J.-T. Kuo and E. Shih, “Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1554-1559, May. 2003.
[27] W. W. Mumford, “Maximally flat filters in waveguide,” Bell Syst. Tech. J., vol. 277, pp. 684~713, Oct. 1948.
[28] D. Ahn, C.-S. Kim, M.-H. Chung, D.-H. Lee, D.-W. Lew, and H.-J. Hong, “The design of parallel coupled line filter with arbitrary image impedance”, in the IEEE MTT-S Symp. Digest, pp. 909-912, 1998.
[29] S. L. March, “Phase velocity compensation in parallel-coupled microstrip”, in the IEEE MTT-S Symp. Digest, pp. 410-412, 1982.
[30] W. T. Joines and J. R. Griffin, “On using the Q of transmission lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 258-260, Apr. 1968.
[31] J. R. Griffin and W. T. Joines, “The general transfer matrix for networks with open-circuited or short-circuited stubs,” IEEE Trans. Circuit Theory, vol. CT-16, pp. 373-376, Aug. 1969.
[32] H. J. Riblet, “General synthesis of quarter-wave impedance transformers,” IRE Trans. Microwave Theory Tech., vol. MTT-5, pp. 36-43, Jan. 1957.
[33] R. A. Dell-Imagine, “A parallel-coupled microstrip filter design procedure,” in the GMTT Symp. Digest, pp. 29-32, 1970.
[34] K. Whiting, “The effect of increased design bandwidth upon directed-coupled-resonator filters,” IEEE Trans. Microwave Theory Tech. (Correspondence), vol. MTT-11, pp. 557-560, Nov. 1963.
[35] B. Easter and C. Gupta, “More accurate model of the coupled microstripline section,” Microwave, Optics and Acoustics, vol. 3, No. 3, pp. 99-103, May 1979.
[36] B. Easter and K. A. Merza, “Parallel-coupled-line filters for inverted-microstrip and suspended-substrate MIC’s,” 11th European Microwave Conf. Proc., pp. 164-168, 1981.
[37] I. E. Lösch and Johannes A. G. Malherbe, “Design procedure for inhomogeneous coupled line sections,” IEEE Trans. Microwave Theory Tech., vol. 36, No. 7, pp. 1186-1190, July 1988.
[38] G. L. Matthaei, “Design of wide-band (and narrow-band) band-pass microwave filters on the insertion loss basis,” IRE Trans. Microwave Theory Tech., vol. MTT-8, pp. 580-593, Nov. 1960.
[39] E. G. Cristal, “New design equations for a class of microwave filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp. 486-490, May 1971.
[40] W. W. Mumford, “An exact design technique for a type of maximally-flat quarter-wave-coupled band pass filter,” in the PTGMTT National Symp. Digest, vol. 63, pp.57~62, May 1963.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top