跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/12 09:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳澤宏
論文名稱:5GHz射頻吉伯特混頻器之設計與實作
論文名稱(外文):Design and Implementation of 5GHz RF Gilbert Mixers
指導教授:孟慶宗
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:153
中文關鍵詞:低中頻吉伯特混頻器共模迴授電流合成器鏡像消除多相位濾波器
外文關鍵詞:SiGeGaAsHBTGilbert mixerLC current combinerimage rejection
相關次數:
  • 被引用被引用:2
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:83
  • 收藏至我的研究室書目清單書目收藏:0
由於系統晶片時代的來臨,外差式接收機已不滿足時代潮流的需要,因此低中頻架構降頻電路是我們本篇論文研究的重點。本篇論文介紹了多種應用於無線區域網路之射頻吉伯特混頻器與一個利用複數混頻器及複數濾波器的方法來消除鏡像訊號干擾的低中頻架構降頻電路。
本篇論文主要以TSMC 0.35μm SiGe BiCMOS製程以及GCT 2μm InGaP/GaAs HBT製程來研製應用於802.11a WLAN之升降頻混頻器。其中SiGe BiCMOS製程包含了5.2GHz共模迴授微混頻器電路、5.7GHz 使用LC電流合成器之升頻微混頻器、整合集總元件Rat-race的5.2GHz LC電流合成升頻器與5.2GHz鏡像消除雙正交四相位降頻器等電路。而採用GCT 2μm InGaP/GaAs HBT製程則包含了5.2GHz單端輸出單端輸入微混頻器與5.2GHz整合集總元件Rat-race的單端輸出單端輸入微混頻器電路。
For the coming age of system-on-chip, because the hetero-dyne receiver can't satisfy the requirement for modern applications, we focus on the low-IF receiver. In this thesis, we introduce many kinds of RF Gilbert mixers and a low-IF down converter which uses the architecture of complex mixers and complex filters to reject image signals.
In this thesis, we implement up-conversion and down-conversion mixers for 802.11a WLAN’s applications by using TSMC 0.35 μm SiGe BiCMOS technology and GCT 2.0 μm InGaP/GaAs HBT process. In SiGe BiCMOS process, there are a 5.2GHz CMFB micromixer, a 5.7GHz up-conversion micromixer using LC current combiner, a 5.2GHz LC current combine up-converter with lumped element rat-race and a 5.2GHz image rejection double quadrature down-converter. In GCT 2.0 μm InGaP/GaAs HBT, there are a 5.2GHz single-in single-out micromixer and a 5.2GHz single-in single-out micromixer with lumped element rat-race.
第一章 導論…………………………………………………………1
1.1 研究動機………………………………………………………1
1.2 論文組識………………………………………………………3
第二章 5.2GHz共模迴授微混頻器設計……………………………4
2.1 混頻器簡介……………………………………………………4
2.2 混波器重要特性參數…………………………………………5
2.2.1 雜訊指數(Noise Figure) ………………………………5
2.2.2 轉換增益(Conversion Gain) ……………………………5
2.2.3 隔離度(Isolation) ………………………………………6
2.2.4 1dB 增益壓縮 (P1dB) ……………………………………7
2.2.5 三階截斷點(Third-Order Intercept Point:IP3) ……7
2.2.6 反射損耗(Return Loss) …………………………………8
2.2.7 功率消耗……………………………………………………9
2.3 共模迴授射頻微混波器設計與實現…………………………9
2.3.1 射頻輸入級…………………………………………………10
2.3.2 共模迴授級…………………………………………………12
2.3.3 輸出緩衝級…………………………………………………13
第三章 LC電流合成升頻器設計……………………………………22
3.1 LC電流合成升頻器……………………………………………22
3.1.1 射頻輸入級…………………………………………………24
3.1.2 電感電容電流合成級………………………………………25
3.1.3 LC電流合成器特性推導……………………………………27
3.2 內建集總Rat-race之LC電流合成升頻器設計與實現………45
3.2.1 中頻輸入級…………………………………………………46
3.2.2 本地震盪源輸入級…………………………………………46
3.2.3 射頻輸出級…………………………………………………48
3.2.4 射頻輸出級的功率增益分析………………………………50
第四章 鏡像消除雙正交四相位降頻器設計……………………62
4.1 RC-CR 多相位濾波器…………………………………………62
4.2 利用多重相位濾波器之四相位降頻器設計與實現…………66
第五章 5.2GHz GaAs HBT 微混頻器設計………………………93
5.1 單端輸出單端輸入微混頻器設計與實現……………………93
5.1.1 射頻輸入級…………………………………………………94
5.1.2 本地震盪源輸入級…………………………………………95
5.1.3 輸出緩衝級…………………………………………………95
5.2 利用集總Rat-race之單端輸出單端輸入微混頻器設計與實現………106
5.2.1 射頻輸入級…………………………………………………107
5.2.2 本地震盪源輸入級…………………………………………107
5.2.3 輸出緩衝級…………………………………………………107
第六章 八相位次諧波降頻混頻器設計…………………………120
6.1 八相位次諧波降頻混頻器設計與實現………………………120
6.1.1 倍頻器電路…………………………………………………121
6.1.2 次諧波降頻混頻器電路……………………………………122
6.1.3 本地震盪源八相位產生器電路……………………………122
第七章 結論………………………………………………………131
[1] K.L. Fong, R.G. Meyer, “Monolithic Active Mixer Design,” IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 46, no. 3, March 1999, pp. 231~239.
[2] C. C. Meng, T. H. Wu, T. H. Wu and G.W. Huang, “A 5.2 GHz 16dB Gain CMFB Gilbert Downconversion Mixer Using 0.35μm Deep Trench Isolation SiGe BiCMOS Technology,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, June 2004, pp. 975-978.
[3] B. Gilbert, “The MICROMIXER: A highly linear variant of the Gilbert mixer using a bisymmetric Class-AB input stage,” IEEE J. Solid-State Circuits, vol. 32, pp. 1412-1423, Sept. 1997.
[4] T. H. Wu, C. C. Meng, T. H. Wu and G.W. Huang, “A 5.7 GHz 0.35μm SiGe HBT Upconversion Micromixer with a Matched Single-ended Passive Current Combiner Output,” European Microwave Week - gallium arsenide and other semiconductors application symposium (GAAS 2004), Amsterdam, Netherlands, Oct. 2004, pp. 323-326.
[5] T. H. Wu, C. C. Meng, T. H. Wu and G.W. Huang, “A 5.7 GHz Gilbert Upconversion Mixer with an LC Current Combiner Output Using 0.35μm SiGe HBT Technology,” IEICE Trans. Electron., vol.E88-C, no. 6, pp. 1267-1270, June 2005.
[6] C. C. Meng, T. H. Wu and M. C. Lin, “Compact 5.2-GHz GaInP/GaAs HBT Gilbert Upconverter Using Lumped Rat-Race Hybrid and Current Combiner,” accept to be published in IEEE Microwave and Wireless Components Letters.
[7] T. H. Wu, C. C. Meng, T. H. Wu and G.W. Huang, “A Monolithic SiGe HBT Gilbert Upconverter With LC Current Mirror Load and Lumped-element Rat-race Balun,” submitted to IEICE Trans. Electron.
[8] T. H. Wu, C. C. Meng, T. H. Wu and G.W. Huang, “A Fully Integrated 5.2 GHz SiGe HBT Upconversion Micromixer Using Lumped Balun and Current Combiner,” IEEE MTT-S Int. Microwave Symp., June 2005.


[9] A. P. Freundorfer and C. Falt, “A Ka-band GaInP/GaAs HBT Double Balanced Upconvert Mixer using Lumped Element Balun,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 17-21, June 1996.
[10] S.J. Parisi, “A Lumped-Element Rat-Race Coupler,” Applied Microwaves, Aug/Sept 1989, p84
[11] Guillermo Gonzalez, “Microwave transistor amplifiers, analysis and design,” Chapter 3, 2nd edition, Prentice-Hall, Inc., New Jersey, 1997.
[12] F. Behbahani, Y. Kishigami, J. Leete, and A. Abidi, “CMOS Mixers and Polyphase Filters for Large Image Rejection,” IEEE J. of solid-state circuits, vol. 36, no. 6, June 2001.
[13] C. C. Meng, T. H. Wu, T. H. Wu and G.W. Huang, “A Fully Integrated 5.2 GHz Double Quadrature Image Rejection Gilbert Downconverter Using 0.35 μm SiGe HBT Technology,” European Microwave Week - gallium arsenide and other semiconductors application symposium (GAAS 2004), Amsterdam, Netherlands, Oct. 2004, pp. 319-322.
[14] K.J. Koh, M.Y. Park, C.S. Kim, “Subharmonically Pumped CMOS Frequency Conversion (Up and Down) Circuits for 2-GHz WCDMA Direct-Conversion Transceiver,” IEEE J. of Solid-State Circuits, vol. 39, no. 6, pp. 871-884, June 2004.
[15] 林明奇,”射頻吉伯特混頻器設計與實作”,國立交通大學碩士論文, 2004
[16] 宋大偉,”混頻器與多相位濾波器”,國立中興大學碩士論文, 2003
[17] J. Durec and E. Main, “A linear class AB single-ended to differential transconverter suitable for RF circuits,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, June 1996, pp. 1071-1074.
[18] J. Durec, “An integrated silicon bipolar receiver subsystem for 900 MHz ISM band applications,” IEEE J. of Solid-State Circuits, vol. 33, No. 9, pp. 1352-1372, Sept. 1998.
[19] J. Crols and M. Steyaert, “Fully Integrated 900 MHz CMOS Double Quadrature Downconverter,” in Proc. ISSCC, session 8.1, San Francisco, Feb. 1995.
[20] J. Crols and M. Steyaert, “A Single-Chip 900 MHz CMOS Receiver Front-End with a High Performance Low-IF Topology,” IEEE J. of Solid-State Circuits, vol. 30, no. 12, pp. 1483-1492, Dec. 1995.
[21] M. Steyaert, M. Borremans, J. Janssens, B. D. Muer, N. Itoh, J. Craninckx, J. Crols, E. Morifuji, H. S. Momose and W. Sansen, “A single-chip CMOS transceiver for DCS-1800 wireless communications,” in Proc. ISSCC, San Francisco, Feb. 1998.
[22] B. Gilbert, “A precise four-quadrant multiplier with subnanosecond response,” IEEE J. Solid-State Circuits, vol. sc-3 no.4, pp. 365-373, Dec. 1968.
[23] A. K. Wong, S. H. Lee and M. G. Wong, “Current combiner enhances active mixer performance,” Microwave and RF, pp. 156-165, March 199
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊