跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/11 00:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:連偉誠
研究生(外文):Wei-Cheng Lien
論文名稱:應用於無線區域網路與藍芽系統之全積體化低功率低相位雜訊整數型及三角積分之分數型頻率合成器
論文名稱(外文):Fully Integrated, Low-Power, Low Phase-Noise Integer-N and Sigma-Delta Fractional-N Frequency Synthesizers for Wireless LAN and Bluetooth Applications
指導教授:周復芳
指導教授(外文):Christina F. Jou
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:140
中文關鍵詞:壓控振盪器頻率合成器整數型分數型三角積分調變
外文關鍵詞:VCOfrequency synthesizerinteger-Nfractional-Nsigma-delta modulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
本論文中主要提出三角積分之分數型頻率合成器,另外還提出兩種不同架構之整數型頻率合成器及兩種不同架構之壓控振盪器,這些電路皆應用於無線區域網路及藍芽無線通訊上。
首先三角積分之分數型頻率合成器,利用0.18微米CMOS製程實現此頻率合成器,以低功率消耗及低相位雜訊為設計主要考量。量測結果如下:可調頻寬為2381 ~ 2606兆赫茲(於頻率控制訊號為10時),相位雜訊為-118.4分貝/赫茲@1兆赫茲,總功率消耗22.9毫瓦,鎖定時間為30微秒,寄生雜頻較主頻低56.5分貝。
接下來是利用0.18微米CMOS製程實現兩個整數型頻率合成器:第一個為寬頻之頻率合成器,其量測結果如下:可調頻寬為2178 ~ 2629兆赫茲(於頻率控制訊號為011時),相位雜訊為-108.8分貝/赫茲@1兆赫茲,總功率消耗38.4毫瓦,鎖定時間為40微秒,寄生雜頻較主頻低26.15分貝;第二個為低功率、低相位雜訊之頻率合成器,其量測結果如下:可調頻寬為2399 ~ 2633兆赫茲(於頻率控制訊號為10時),相位雜訊為-114.0分貝/赫茲@1兆赫茲,總功率消耗28.3毫瓦,鎖定
時間為90微秒,寄生雜頻較主頻低41.50分貝。
最後利用0.35微米SiGe BiCMOS製程實現寬頻、低功率之壓控振盪器,量測結果如下:可調頻寬為4310 ~ 5430兆赫茲,相位雜訊為-114.1分貝/赫茲@1兆赫茲,總功率消耗16.7毫瓦。另外利用0.18微米CMOS製程實現四相位壓控振盪器,利用基底端做訊號耦合。量測結果如下:可調頻寬為2093 ~ 2206兆赫茲(於頻率控制訊號為100時),相位雜訊為-124.3分貝/赫茲@1兆赫茲,總功率消耗19.8毫瓦。
This thesis contents a sigma-delta fractional-N synthesizer mainly. Besides, it contents two integer-N synthesizers and two voltage-controlled oscillators. These circuits are implemented for WLAN and Bluetooth applications.
First, we describe the sigma-delta fractional-N frequency synthesizer, using 0.18µm CMOS technology. Design consideriation contants low power consumption and the low phase noise. The measurement results are listed as following: the oscillation frequency is tunable between 2381 ~ 2606-MHz (as frequency bank is 10), phase noise is -118.4dBc/Hz @1-MHz offset, the power consumption is 22.9mW, locking time is approximately 30µs, and spurious tone is -56.5dBc.
Then we describe two integer-N frequency synthesizers, using 0.18µm CMOS technology. One is wide tuning range frequency synthesizer. The measurement results are listed as following: the oscillation frequency is tunable between 2178 ~ 2629-MHz (as frequency bank is 011), phase noise is -108.8dBc/Hz @1-MHz offset, the power consumption is 38.4mW, locking time is approximately 40µs, and spurious tone is -26.15dBc. Another is low power, low phase noise range frequency synthesizer. The measurement results are listed as following: the oscillation frequency is tunable
between 2399 ~ 2633-MHz (as frequency bank is 10), phase noise is -114.0dBc/Hz @1-MHz offset, the power consumption is 28.3mW, locking time is approximately 90µs, and spurious tone is -41.50dBc.
Finally we describe a wide tuning range, low power VCO, using 0.35µm SiGe BiCMOS technology. The measurement results are listed as following: the oscillation frequency is tunable between 4310 ~ 5430-MHz, phase noise is -114.1dBc/Hz @1-MHz offset, and the power consumption is 16.7mW. Besides we also describe a low power, low phase back-gate quadrature VCO, using 0.18µm CMOS technology.
The measurement results are listed as following: the oscillation frequency is tunable between 2093 ~ 2206-MHz (as frequency bank is 100), phase noise is -124.3dBc/Hz
@1-MHz offset, and the power consumption is 19.8mW.
[1] D. M. W. Leenaerts, C. S. Vaucher, H. J. Bergveld, M. Thompson, and K. Moore, “A 15-mW Fully Integrated I/Q Synthesizer for Bluetooth in 0.18um CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp.1155-1161, July 2003.
[2] IEEE Std 802.11b-1999, “Supplement To IEEE Standard For Information Technology- Telecommunications And Information Exchange Between Systems- Local And Metropolitan Area Networks- Specific Requirements- Part 11: Wireless LAN Medium Access Control (MAC) And Physical Layer (PHY) Specifications: Higher-speed Physical Layer Extension In The 2.4 GHz Band,” September 1999.
[3] IEEE Std 802.11g-2003, “IEEE standard for information technology- telecommunications and information exchange between systems- local and metropolitan area networks- specific requirements Part II: wireless LAN medium access control (MAC) and physical layer (PHY) specifications,” June 2003.
[4] IEEE Std 802.11a-1999, “Supplement to IEEE standard for information technology telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements. Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: high-speed physical layer in the 5 GHz band,” September 1999.
[5] D. Theil, C. Durdodt, A. Hanke, S. Heinen, S. V. Waasen, D. Seippel, D. P. Stabner, and K. Schumacher, "A Fully Integrated CMOS Frequency Synthesizer for Bluetooth,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 103-106, Phoenix, Arizona, USA., May 20-22, 2001.
[6] G. C. T. Leung and H. C. Luong, “A 1-V 5.2-GHz CMOS Synthesizer for WLAN Applications,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1873-1882, November 2004.
[7] K. Shu, E. S�鴨chez-Sinencio, J. Silva-Mart�瀋ez, and S. H. K. Embabi, “A 2.4-GHz Monolithic Fractional-N Frequency Synthesizer With Robust Phase-Switching Prescaler and Loop Capacitance Multiplier,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 866-874, June 2003.
[8] E. Temporiti, G. Albasini, I. Bietti, R. Castello, and M. Colombo, “A 700-kHz Bandwidth Sigma-Delta Fractional Synthesizer with Spurs Compensation and Linearization Techniques for WCDMA Applications,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1446-1454, Sepember 2004.
[9] J. W. M. Rogers, F. F. Dai, M. S. Cavin, and D. G. Rahn, “A Multiband △∑ fractional-N Frequency Synthesizer for a MIMO WLAN Transceiver RFIC,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 678-689, March 2005.
[10] Christina F. Jou, Kuo-Hua Cheng, Wei-Cheng Lien, Chun-Hsien Wu, and Chin-Hsien Yen, “A 2.45 GHz / 5.25 GHz Concurrent Dual-Band Receiver Front-End Using 0.18μm CMOS,” IEEE Transaction on Microwave Theory and Techniques Mini-Special Issue on: Papers of Asia-Pacific Microwave Conference (APMC 2004), New Delhi, India, December 15-18, 2004.
[11] Jheng-Liang, Chen, “A Fully Integrated I/Q Integer-N Frequency Synthesizer for Bluetooth and A Research In Sub-Harmonic Mixer For Wireless Application In 0.25μm CMOS,” Thesis of Master’s Degree, Institute of communication engineering, NCTU, Taiwan, ROC, June 2004.
[12] Hsien-Cheng Hsieh, “The Design of Low Power Voltage Controlled Oscillator and Fully Integrated 2.4GHz CMOS Integer-N Frequency Synthesizer,” Thesis of Master’s Degree, Institute of communication engineering, NCTU, Taiwan, ROC, June 2003.
[13] Z. Shu, K.L. Lee, and B. H. Leung, “A 2.4-GHz Ring-Oscillator-Based CMOS Frequency Synthesizer With a Fractional Divider Dual-PLL Architecture,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 452-462, March 2004.
[14] Christina F. Jou, Kuo-Hua Cheng, and Wei-Cheng Lien, “Design of a Low-Power and Wide Tuning Range SiGe VCO” IEEE Transaction on Microwave Theory and Techniques Mini-Special Issue on: Papers of Asia-Pacific Microwave Conference (APMC 2004), New Delhi, India, December 15-18, 2004.
[15] Chih-Ming Hung, Brian A Floyd, Namkyu Park, Kenneth K. O, “Fully Integrated 5.35-GHz CMOS VCOs and Prescalars,” IEEE transactions on Microwave Theory and Techniques, vol.49, no.1, pp. 17-22, January 2001.
[16] Bhattacharjee, J. et al, “A 5.8 GHz fully integrated low power low phase noise CMOS LC VCO for WLAN applications,” Microwave Symposium Digest, 2002 IEEE MTT-S International, vol. 1, pp. 585-588, Seattle, WA, USA, June 2-7, 2002.
[17] David I. Sanderson and Sanjay Raman, “5-6GHz SiGe VCO with Tunable Ployhpase Output for Analog Image Rejection and I/Q Mismatch compensation,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 683-686, Philadelphia, PA, USA, June 3-10, 2003.
[18] Y. K. Chu and H. R. Chuang, “A fully integrated 5.8 GHz U-NII band 0.18-μm CMOS VCO,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 7, pp. 287-289, July 2003.
[19] B. Min and H. Jeong, “5-GHz CMOS LC VCOs With Wide Tuning Ranges,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 5, pp. 336-338, May 2005.
[20] Gwong-Wai Cheng, “A 5.25-GHz Fully Integrated CMOS Quadrature Voltage-Controlled Oscillator,” Thesis of Master’s Degree, Institute of communication engineering, NCTU, Taiwan, ROC, June 2002.
[21] H.R. Kim, C.Y. Cha, S.M. Oh, M.S. Yang, and S.G. Lee, “A Very Low-Power Quadrature VCO with Back-Gate Coupling,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 952-955, June 2004.
[22] Marc Tiebout, “Low-Power Low-Phase-Noise Differentially Tuned Quadrature VCO Design in Standard CMOS,” IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1018-1024, July 2001.
[23] H. Shin, Z. Xu, and M. F. Chang, “A 1.8-V 6/9-GHz Reconfigurable Dual-Band Quadrature LC VCO in SiGe BiCMOS Technology,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp.1028-1032, June 2003.
[24] A. D. Berny, A. M. Niknejad, and R. G. Meyer, “A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp.909-917, April 2005.
[25] J. Craninckx, M. Steyaert, “Wireless CMOS Frequency Synthesizer Design,” Kluwer Academic Publishers, 1998.
[26] Behzad Razavi, “RF Microelectronics,” Prentice Hall, 1997.
[27] Johan van der Tang and Dieter Kasperkovitz, “High-Frequency Oscillator Design for Integrated Transceivers,” Kluwer Academic Publishers, 2003.
[28] D. Ham and A. Hajimiri, “Concepts and Methods of Optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol 36, no. 6, pp.896-909, June 2001.
[29] Bram De Muer and Michiel Steyaert, “CMOS Fractional-N Synthesizers-Design for High Spectral Purity and Monolithic Integration,” Kluwer Academic Publishers, 2003.
[30] Henrik O. Johansson, “A Simple Precharged CMOS Phase Frequency Detector,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 295-299, February 1998.
[31] Alireza Zolfaghari, and Behzad Razavi, “A Low-Power 2.4-GHz Transmitter/Receiver CMOS IC,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 176-183, February 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top