跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 13:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張正明
研究生(外文):Cheng-Min Chang
論文名稱:多代擴散模型實證研究─以日本地區電信業者NTTDoCoMo為例
論文名稱(外文):The empirical research of multi-generational diffusion model – a case of Japan operator NTT DoCoMo
指導教授:唐瓔璋唐瓔璋引用關係
指導教授(外文):Edwin Tang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:管理學院碩士在職專班經營管理組
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:65
中文關鍵詞:多代擴散模型第三代行動通訊系統創新係數模仿係數市場潛量
外文關鍵詞:Multi-generational diffusion modelThe third generation mobile systemCoefficient of innovationCoefficient of imitationMarket potential
相關次數:
  • 被引用被引用:5
  • 點閱點閱:413
  • 評分評分:
  • 下載下載:89
  • 收藏至我的研究室書目清單書目收藏:1
隨著通訊技術的不斷進步,通訊系統也由第二代行動電話演進到第三代行動電話,系統業者投入大規模的資金研發新技術,而電信業者也持續投入大量資金建置新的通訊系統,但是第三代行動電話市場會不會起飛及用戶的市場潛量是多少,是一個電信業者投資設備前的重要議題。由於新產品失敗率高達95% (Deloite and Touche (1998)),因此如何建置一套有效的用戶擴散模型以降低設備投資的風險並協助行銷策略的制定,對電信業者尤為重要,因為其設備建置所需投入的金錢與時間較其他產業龐大。

本研究以日本電信業者NTT DoCoMo的第二代行動電話及第三代行動電話用戶擴散為研究對象,資料取自日本的電信業者協會的行動電話用戶資料庫,分別為1996年2月到2005年1月間共108期的第一世代2G PDC行動電話與2001年2月到西元2005年1月間共40期的第二個世代3G WCDMA行動電話累積用戶數。研究以 SAS 做為資料分析的工具並使用非線性回歸及非線性最小平方法做為資料分析與參數估計的方法。

本研究比較了不同的多代擴散模型對NTT DoCoMo的多代用戶數擴散預測的配適,結果證實Bass and Bass (2004) 提出的多代擴散模型在世代採用不同創新係數與模仿係數下對第三代行動電話用戶數預測的配適效果與預測能力最好。研究發現針對第三代行動電話用戶擴散創新係數小於模仿係數,因此業者制定行銷策略時,除了吸引創新族群,也要讓他們對模仿者族群造成口耳相傳的影響力,造成第三代行動電話用戶數的擴散。
As the 2G mobile systems are continually evolving into 3G technologies, the system vendors and mobile operators put a lot of investment to build the new generation of mobile systems. Before investing new equipment or product, it is very important for investors to know what the potential market size is. Since the new product launch fail rate is up to 95% (Deloite and Touche 1998), it is very important for mobile operators to gauge how the market will evolve to minimize risks of investment.

This research studies Japan NTT DoCoMo 3G subscribers’ diffusion growth. The data is taken from Telecommunications Carriers Association subscriber database in 2G PDC and 3G WCDMA subscribers during the period of 02/1996 to 01/2005. Norton and Bass (1986) and Bass and Bass (2004) multi-generational models with different coefficients of innovation and imitation are applied.

The results indicate multi-generation with different innovation and imitation coefficients best fit to NTT DoCoMo 3G subscribers forecast. In addition, the diffusion growth pattern shows that coefficient of innovation is smaller than coefficient of imitation. This suggests that operator should acquire not only the new adaptors but also apply “world of mouth” strategy to develop the market.
參考文獻
1. Crawford, K., New Product Management, Illinois: Richard D. Irwin, Inc., 1983
2. Bonnect, C.L., “Nature of R&D/Marketing Cooperation in the Design of Technologically Advanced New Industrial Products”, R&D Management, 16 (2), pp. 117-126, 1986
3. Nielsen, A.C. “New Product Introduction – Successful Innovation/Failure: Fragile Boundary”, A. C. Nielen BASES and Ernst & Young Global Client Consulting, June 1999
4. Deloite and Touche, “Vision in Manufacturing Study”,Deloitte Consultng and Kenan-Flagler Business School, March 1998
5. Bass, F. M., “A new product growth model for consumer durables”, Management Science, 15, pp. 215-227, Jan 1969.
6. Mahajan, V., Muller, E., and Bass F.M., "New product diffusion models in marketing: A review and directions for research", Journal of Marketing, 54, pp. 1-26, Jan 1990.
7. Bass, F.M., Krishnan, T.V., Jain, D.C., Why the Bass Model Fits with Decision Variables, Marketing Science, Vol. 13, No3, p203-223, 1994.
8. Norton, J. A. and Bass, F.M., “A diffusion theory model of adoption and substitution for successive generations of high-technology products”, Management Science, 33, pp. 1069-1086, Sep 1987.
9. Mahajan, V., Muller, E., “Timing, diffusion, and substitution of successive generations of technological innovations: the IBM mainframe case”, Tech. Forecasting and Social Change, 51, pp. 109-132, 1996.
10. Danaher, P. J., Hardie, B. G. S., Putsis, W. P., “Marketing-mix variables and the diffusion of successive generations of a technological innovation”, Journal of Marketing Research, 38, pp. 501-514. 2001.
11. Bass, P. I., Bass, F. M., “Diffusion of technology generations: A model of adoption and repeat sales”, working paper, Bass Economics Inc. (www.basseconomics.com), Frisco, TX. 2001.
12. Bass, P. I., Bass, F. M., “IT Waves: Two completed generational diffusion models”, working paper, Bass Economics Inc. (www.basseconomics.com), Frisco, TX. , Nov 2004.
13. Telecommunications Carriers Association Database, “The number of subscribers of Mobile Telephone, PHS (Personal Handy-phone System), Internet Provider Services and Radio Paging”, Japan, Mar, 2005
14. 孫中璽,「具網路外部性產品之擴散模型研究」,國際東華大學國際企業研究所,碩士論文,民國92年6月
15. Norton, J. A., Bass, F. M., “Evolution of technological generations: the law of capture”, Sloan Management Review, 33,pp. 66-77, 1992.
16. Islam, T., Meade, N., “The Diffusion of Successive Generations of a Technology: A More General Model’, Tech. Forecasting and Social Change, 56, pp. 49-60. 1997.
17. Kim, Y.B., Seo, S. Y. and Lee, Y.T., “A Substitution and Diffusion Model with Exogenous Impact: Forecasting of IMT-2000 Subscribers in Korea”, 50th IEEE VTS (Vehicular Technology Society), VTC (Vehicular Technology Conference), 1999-Fall, Vol. 2, pp. 048-953, 1999
18. Kim, N., Chang, D. R., Shocker, A. D., “Modeling intercategory and generational dynamics for a growing information technology industry”, Management Science, 46 pp. 496-512, 2000.
19. Danaher, P. J., Hardie, B. G. S., Putsis, W. P., “Marketing-mix variables and the diffusion of successive generations of a technological innovation”, Journal of Marketing Research, 38, pp. 501-514, 2001.
20. Kalish, S. and Lilien, G. L., “A Market Entry Timing Model for New Technologies”, Management Science, Vol. 32, pp.194-205, 1986.
21. Lilien, G.L., Rao, A. G. and Kalish, S., “Bayesian Estimation and Control of Detailing Effort in a Repeat Purchase Diffusion Environment”, Management Science, Vol. 27, pp.493-506, 1981.
22. Thomas, Robert J.,”Estimating Marketing Growth for New Products: An Analogical Diffusion Model Approach”, Journal of Product Innovation Management, 2, pp. 45-55, Mar, 1985.
23. Schmittlein, D.C., and Mahajan,V., “Maximum Likelihood Estimation for an Innovation Diffusion Model of New Product Acceptance”, Marketing Science, Vol. 1, No. 1, pp.57-78, 1982.
24. Srinivason, V., and Mason, C.H., “Nonlinear Squares Estimation of New Product Diffusion Models”, Marketing Science, Vol. 5, No. 2, pp. 169-178, 1986
25. Martin, C.A. and Witt, S.F., “Forecasting Tourism Demand: A Comparison of the Accuracy of Several Quantitative Methods”, International Journal of Forecasting, 5 (1) pp 1-13, 1989
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top