跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 02:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林國樺
研究生(外文):Guo Hua Lin
論文名稱:整數階與分數階電動機系統混沌同步與混沌控制
論文名稱(外文):Chaos synchronization and chaos control for integral and fractional order motor system
指導教授:戈正銘戈正銘引用關係
指導教授(外文):Zheng Ming Ge
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:80
中文關鍵詞:混沌混沌同步混沌控制適應控制環狀連接分數階
外文關鍵詞:chaoschaotic synchronizationchaos controladaptive controlring connectionfractional order
相關次數:
  • 被引用被引用:1
  • 點閱點閱:425
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本篇論文利用了線性回饋控制法的單變數控制與適應控制法的單變數控制來完成混沌同步,並且應用了Pecoro 與 Carroll 的概念於無刷直流馬達電動機系統來達成完全混沌同步與延遲混沌同步。論文又提出無刷直流馬達電動機系統的廣義的完全同步、延遲同步及預測同步。混沌現象一般發生在至少為三階的非線性的自治系統中,我們得出小於三階及大於三階的分數階的非線性自治BLDCM系統中所發生的混沌行為並且利用線性回饋的控制方法使其穩定於系統之平衡點,最後亦可使其達到混沌同步。
ABSTRACT

In this thesis, synchronization by linear feedback control and adaptive control via a system variable, and global synchronization of three coupled chaotic systems with ring connection are achieved, and using conception of Pecoro and Carroll for complete, lag and anticipated synchronization are applied in BLDCM system. The generalized complete, lag and anticipated synchronization is presented in this thesis. In general, the chaotic behavior is found in nonlinear autonomous systems with order 3, in this thesis, we presented that chaos exists in the fractional order BLDCM system with order less than 3 and more than 3, and synchronization for fractional order of identical and different chaotic system are also achieved.
REFERENCES
[1]. J. M. Ottino et al., “Chaos, Symmetry, and Self-Similarity: Exploiting Order and Disorder in Mixing Process”, Science, Vol. 257, pp. 754-760(1992).
[2]. S. J. Schiff, K. Jerger, D. H. Duong, T. Chang, M. L. Spano, and W. L. Ditto, “Controlling Chaos in the Brain”, Nature, Vol. 370, pp. 615-620(1994).
[3]. M. E. Brandt and G. Chen, “Bifurcation Control of Two Nonlinear Models of Cardiac Activity”, IEEE Trans. Circuits Syst., Vol. 44, pp. 1031-1034(1997).
[4]. K. M. Cuomo and V. Oppenheim, “Circuit Implementation of Synchronized Chaos with Application to Communication”, Phys. Rev. Lett., Vol. 71, pp. 65(1993).
[5]. L. Kocarev and U. Parlitz, “General Approach for Chaotic Synchronization with Application to Communication”, Phys. Rev. Lett., Vol. 74, pp. 5028(1995).
[6]. S. K. Han, C. Kerrer and Y. Kuramoto, “Dephasing and Bursting in Coupled Neural Oscillators”, Phys. Rev. Lett., Vol. 75, pp. 3190(1995).
[7]. B. Blasius, A. Huppert and L. Stone, “Complex Dynamics and Phase Synchronization in Spatially Extended Ecological Systems”, Nature, Vol. 399, pp. 359(1999).
[8]. H. Asada and K. Youcef-Toumi, Direct Drive Robots: Theory and Practice, Cambridge, MA: MIT Press (1987).
[9]. S. Murugesan, “An Overview of Electric Motors for Space Applications”, IEEE Trans. Ind. Elect. Contr. Instrum., Vol. IECI-28, No. 4(1981).
[10] W. Xie, C. Wen, Z. Li,”Impusive Control For the Stabilization and Synchronization of
Lorenz Systems” Phys. Lett. A ;275 67(2000).
[11] Z.-M. Ge ; C.-C. Chang “Chaos Synchronization and Parameters Identification of
Single Time Scale Brushless DC Motors” Chaos, Solitions and Fractals Vol.20, No 4,
pp.883-903(2004).
[12] M. Rosenblum , A Pikovsky , J. Kurth ” Phase Synchronization in Chaotic Oscillators”.
Phys Rev Lett ;76:1804–7(1996).
[13] M. Rosenblum “A Characteristic Frequency of Chaotic Dynamical System” Chaos,
Solitons & Fractals ;3(6):617–26(1993).
[14] D.Xu , Z. Li “Controlled Projective Synchronization in Nonpartially-Linear Chaotic
Systems”. Int J Bifurc Chaos ;12(6):1395–402(2002).
[15] D. Xu , C. Chee , C. Li “A Necessary Condition of Projective Synchronization in
Discrete-Time Systems of Arbitrary Dimensions”. Chaos, Solitons & Fractals
;22(1):175–80(2004).
[16] Z.-M. Ge ; C.-C.,Chen “Phase Synchronization of Coupled Multiple Time Scales
Systems “ Chaos, Solitions and Fractals Vol.20, No 3, pp.639-647(2004)
[17]. P. C. Krause, Analysis of Electric Machinery, McGraw-Hill(1986).
[18]. N. Hemati and M. C. Leu, “A Complete Model Characterization of Brushless DC Motors”, IEEE Trans. Ind. Appl., Vol. 28, No. 1, pp.172-180 (1992).
[19]. N. Hemati, “Strange Attractors in Brushless DC Motors”, IEEE Trans. Circuits Syst., Vol. 41, No. 1, pp. 40-45 (1994).
[20]. N. Hemati, “Dynamic Analysis of Brushless Motors Based on Compact
Representations of the Equations of Motion”, IEEE Trans. Ind. Appl. Soci.
Annual Meeting, Vol. 1, pp. 51-58 (1993).
[21]Yanwu Wang, Zhi-Hong Guan, Hua O. Wang “ Feedback and Adaptive Control for
The Synchronization of Chen System Via A Single Variable” Phys.Lett. A312,
34-40(2001).
[22] P. Parmananda, “Synchronization Using Linear and Nonlinear Feedback :A
Comparison”Phys. Lett. A 240, 55(1998).
[23] T.-L. Liao, S.-H. Tsai, “Adaptive Synchronization of Chaotic Systems and Its
Application to Secure Communications” Chaos ,Solitons and Fractals 11 ,1387(2000).
[24] S. Chen , J. Lu “Synchronization of Uncertain Unified Chaotic System via Adaptive
Control”. Chaos, Solitons & Fractal ;14(4):643–7(2002).
[25] C. Wang, S.S. Ge,”Adaptive Synchronization of Uncertain Chaotic Systems Via
Backstepping Design” Chaos, Solitons and Fractals 12 ,1199(2001).
[26] H.-T. Yan, “Design of Adaptive Sliding Mode Controller for Chaos Synchronization
with Uncertainties”, Chaos,Solitons and Fractals 22, pp. 341-347(2004).
[27].Y. Yu and S. Zhang”Global Synchronization of Three Coupled Systems with Ring Connection” Chaos, Solitons and Fractals 24, 1233-1242(2005).
[28] A. Alexeyev , V. Shalfeev “Chaotic Synchronization of Mutually-Coupled
Generators with Frequency-Controlled Feedback Loop”. Int J Bifurc Chaos
;5:551–8(1995).
[29]. L. M. Pecora and Th. L. Carroll “Synchronization in Chaotic
System ”Phys. Rev.Letter, volume 64,pp.821-824(1990).
[30]. L. Pecora, T. Carroll, G. Johnson, and D. “Fundamentals of Synchronization in Chaotic
Systems,Concepts and Applications” Mar, Chaos 7, 520 (1997).
[31]. H.U.Voss, “Anticipating Chaotic Synchronization”Phys. Rev. E 61, 5115 (2000)
[32] S. Taherion , Y. Lai “Experimental Observation of Lag Synchronization in Coupled
Chaotic Systems”. Int J Bifurc Chaos ;10:2587–94(2000).
[33]. O. Calvo, D. R. Chialvo, V. M. Egu�殯uz, C. Mirasso, and R. Toral “Anticipated Synchronization : A Metaphorical Liner View” Chaos ,Vol 14,pp 7-13(2004).
[34] Z. Li, D. Xu “A Secure Communication Scheme Using Projective Chaos
Synchronization”. Chaos, Solitons & Fractals ;22(2):477–81(2004).
[35] C. Masoller, ”Anticipation in The Synchronization of Chaotic Time-Delay Systems”
Physica A 295 ,301(2001).
[36].Zhenya Yan “A New Scheme to Generalized (Lag, Anticipated and Complete)
Synchronization in Chaotic and Hyperchaotic Systems”CHAOS 15, 013101 (2005)
[37] H.N. Agiza, M.T. Yassen, “Synchronization of Rossler and Chen Chaotic
Dynamical Systems Using Active Control” Phys. Lett. A 278 ,191(2001).
[38] X.Yang, G. Chen “Some Observer-Based Criteria for Discrete-Time Generalized
Chaos Synchronization”. Chaos, Solitons and Fractals ;13(6):1303–8(2002).
[39] N. Rulkov ,K. Sushchik , L. Tsimring , H. Abarbanel . “Generalized Synchronization
of Chaos in Directionally Coupled Chaotic Systems”.Phys Rev E 1995;51:980–94
[40] G. Chen , S. Liu “On Generalized Synchronization of Spatial Chaos”. Chaos,
Solitons and Fractals ;15(2):311–8(2003).
[41] L. Kocarev , U. Parlitz . “Generalized Synchronization, Predictability, and
Equivalence of Unidirectionally Coupled Dynamics Systems”.Phys Rev Lett
;76:1816–9(1996).
[42] G. Jiang, W. Zheng , G. Chen “Global Chaos Synchronization with Channel
Time-Delay”. Chaos, Solitons and Fractals ;20(2):267–75(2004).
[43]. Chunguang Li and Guanrong Chen system “Chaos in The Fractional Order Chen System
and Its Control” Chaos Solitons and Fractals 24, 1233-1242(2004).
[44] A. Oustaloup , J. Sabatier, P. Lanusse “From Fractal Robustness to CRONE
Control”. Fract Calculus Appl Anal ;2:1–30(1999).
[45] A. Oustaloup, F. Levron , Nanot, B. Mathieu “Frequency Band Complex Non
integer Differentiator”: characterization and synthesis.IEEE Trans CAS-I
;47:25–40(2000).
[46] YQ. Chen, K. Moore “Discretization Schemes for Fractional-Order Differentiators
and Integrators”. IEEE Trans CAS-I ;49:363–7(2002).
[47] TT. Hartley , CE. Lorenzo “Dynamics and Control of Initialized Fractional-Order
Systems”. Nonlinear Dynamics ;29:201–33(2002).
[48] C.Hwang , J.-F.Leu , S.Y. Tsay “A Note on Time-Domain Simulation of Feedback
Fractional-Order Systems”. IEEE Trans Auto Contr ;47:625–31(2002).
[49] I. Podlubny , I.Petras , BM. Vinagre, O’Leary P, Dorcak L. “Analogue Realizations
of Fractional-Order Controllers”. Nonlinear Dynamics;29:281–96(2002).
[50] Li C, Liao X, Yu J. “Synchronization of Fractional Order Chaotic Systems”. Phys
Rev E ;68:067203(2003).
[51] Tom T. Hartley, Carl F. Lorenzo, and Helen Killory Qammer “ Chaos in Fractional Order Chua’s System” IEEE, Tran. on circuit and systems,Vol. 42, No 8(1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊