|
REFERENCES [1]. J. M. Ottino et al., “Chaos, Symmetry, and Self-Similarity: Exploiting Order and Disorder in Mixing Process”, Science, Vol. 257, pp. 754-760(1992). [2]. S. J. Schiff, K. Jerger, D. H. Duong, T. Chang, M. L. Spano, and W. L. Ditto, “Controlling Chaos in the Brain”, Nature, Vol. 370, pp. 615-620(1994). [3]. M. E. Brandt and G. Chen, “Bifurcation Control of Two Nonlinear Models of Cardiac Activity”, IEEE Trans. Circuits Syst., Vol. 44, pp. 1031-1034(1997). [4]. K. M. Cuomo and V. Oppenheim, “Circuit Implementation of Synchronized Chaos with Application to Communication”, Phys. Rev. Lett., Vol. 71, pp. 65(1993). [5]. L. Kocarev and U. Parlitz, “General Approach for Chaotic Synchronization with Application to Communication”, Phys. Rev. Lett., Vol. 74, pp. 5028(1995). [6]. S. K. Han, C. Kerrer and Y. Kuramoto, “Dephasing and Bursting in Coupled Neural Oscillators”, Phys. Rev. Lett., Vol. 75, pp. 3190(1995). [7]. B. Blasius, A. Huppert and L. Stone, “Complex Dynamics and Phase Synchronization in Spatially Extended Ecological Systems”, Nature, Vol. 399, pp. 359(1999). [8]. H. Asada and K. Youcef-Toumi, Direct Drive Robots: Theory and Practice, Cambridge, MA: MIT Press (1987). [9]. S. Murugesan, “An Overview of Electric Motors for Space Applications”, IEEE Trans. Ind. Elect. Contr. Instrum., Vol. IECI-28, No. 4(1981). [10] W. Xie, C. Wen, Z. Li,”Impusive Control For the Stabilization and Synchronization of Lorenz Systems” Phys. Lett. A ;275 67(2000). [11] Z.-M. Ge ; C.-C. Chang “Chaos Synchronization and Parameters Identification of Single Time Scale Brushless DC Motors” Chaos, Solitions and Fractals Vol.20, No 4, pp.883-903(2004). [12] M. Rosenblum , A Pikovsky , J. Kurth ” Phase Synchronization in Chaotic Oscillators”. Phys Rev Lett ;76:1804–7(1996). [13] M. Rosenblum “A Characteristic Frequency of Chaotic Dynamical System” Chaos, Solitons & Fractals ;3(6):617–26(1993). [14] D.Xu , Z. Li “Controlled Projective Synchronization in Nonpartially-Linear Chaotic Systems”. Int J Bifurc Chaos ;12(6):1395–402(2002). [15] D. Xu , C. Chee , C. Li “A Necessary Condition of Projective Synchronization in Discrete-Time Systems of Arbitrary Dimensions”. Chaos, Solitons & Fractals ;22(1):175–80(2004). [16] Z.-M. Ge ; C.-C.,Chen “Phase Synchronization of Coupled Multiple Time Scales Systems “ Chaos, Solitions and Fractals Vol.20, No 3, pp.639-647(2004) [17]. P. C. Krause, Analysis of Electric Machinery, McGraw-Hill(1986). [18]. N. Hemati and M. C. Leu, “A Complete Model Characterization of Brushless DC Motors”, IEEE Trans. Ind. Appl., Vol. 28, No. 1, pp.172-180 (1992). [19]. N. Hemati, “Strange Attractors in Brushless DC Motors”, IEEE Trans. Circuits Syst., Vol. 41, No. 1, pp. 40-45 (1994). [20]. N. Hemati, “Dynamic Analysis of Brushless Motors Based on Compact Representations of the Equations of Motion”, IEEE Trans. Ind. Appl. Soci. Annual Meeting, Vol. 1, pp. 51-58 (1993). [21]Yanwu Wang, Zhi-Hong Guan, Hua O. Wang “ Feedback and Adaptive Control for The Synchronization of Chen System Via A Single Variable” Phys.Lett. A312, 34-40(2001). [22] P. Parmananda, “Synchronization Using Linear and Nonlinear Feedback :A Comparison”Phys. Lett. A 240, 55(1998). [23] T.-L. Liao, S.-H. Tsai, “Adaptive Synchronization of Chaotic Systems and Its Application to Secure Communications” Chaos ,Solitons and Fractals 11 ,1387(2000). [24] S. Chen , J. Lu “Synchronization of Uncertain Unified Chaotic System via Adaptive Control”. Chaos, Solitons & Fractal ;14(4):643–7(2002). [25] C. Wang, S.S. Ge,”Adaptive Synchronization of Uncertain Chaotic Systems Via Backstepping Design” Chaos, Solitons and Fractals 12 ,1199(2001). [26] H.-T. Yan, “Design of Adaptive Sliding Mode Controller for Chaos Synchronization with Uncertainties”, Chaos,Solitons and Fractals 22, pp. 341-347(2004). [27].Y. Yu and S. Zhang”Global Synchronization of Three Coupled Systems with Ring Connection” Chaos, Solitons and Fractals 24, 1233-1242(2005). [28] A. Alexeyev , V. Shalfeev “Chaotic Synchronization of Mutually-Coupled Generators with Frequency-Controlled Feedback Loop”. Int J Bifurc Chaos ;5:551–8(1995). [29]. L. M. Pecora and Th. L. Carroll “Synchronization in Chaotic System ”Phys. Rev.Letter, volume 64,pp.821-824(1990). [30]. L. Pecora, T. Carroll, G. Johnson, and D. “Fundamentals of Synchronization in Chaotic Systems,Concepts and Applications” Mar, Chaos 7, 520 (1997). [31]. H.U.Voss, “Anticipating Chaotic Synchronization”Phys. Rev. E 61, 5115 (2000) [32] S. Taherion , Y. Lai “Experimental Observation of Lag Synchronization in Coupled Chaotic Systems”. Int J Bifurc Chaos ;10:2587–94(2000). [33]. O. Calvo, D. R. Chialvo, V. M. Egu�殯uz, C. Mirasso, and R. Toral “Anticipated Synchronization : A Metaphorical Liner View” Chaos ,Vol 14,pp 7-13(2004). [34] Z. Li, D. Xu “A Secure Communication Scheme Using Projective Chaos Synchronization”. Chaos, Solitons & Fractals ;22(2):477–81(2004). [35] C. Masoller, ”Anticipation in The Synchronization of Chaotic Time-Delay Systems” Physica A 295 ,301(2001). [36].Zhenya Yan “A New Scheme to Generalized (Lag, Anticipated and Complete) Synchronization in Chaotic and Hyperchaotic Systems”CHAOS 15, 013101 (2005) [37] H.N. Agiza, M.T. Yassen, “Synchronization of Rossler and Chen Chaotic Dynamical Systems Using Active Control” Phys. Lett. A 278 ,191(2001). [38] X.Yang, G. Chen “Some Observer-Based Criteria for Discrete-Time Generalized Chaos Synchronization”. Chaos, Solitons and Fractals ;13(6):1303–8(2002). [39] N. Rulkov ,K. Sushchik , L. Tsimring , H. Abarbanel . “Generalized Synchronization of Chaos in Directionally Coupled Chaotic Systems”.Phys Rev E 1995;51:980–94 [40] G. Chen , S. Liu “On Generalized Synchronization of Spatial Chaos”. Chaos, Solitons and Fractals ;15(2):311–8(2003). [41] L. Kocarev , U. Parlitz . “Generalized Synchronization, Predictability, and Equivalence of Unidirectionally Coupled Dynamics Systems”.Phys Rev Lett ;76:1816–9(1996). [42] G. Jiang, W. Zheng , G. Chen “Global Chaos Synchronization with Channel Time-Delay”. Chaos, Solitons and Fractals ;20(2):267–75(2004). [43]. Chunguang Li and Guanrong Chen system “Chaos in The Fractional Order Chen System and Its Control” Chaos Solitons and Fractals 24, 1233-1242(2004). [44] A. Oustaloup , J. Sabatier, P. Lanusse “From Fractal Robustness to CRONE Control”. Fract Calculus Appl Anal ;2:1–30(1999). [45] A. Oustaloup, F. Levron , Nanot, B. Mathieu “Frequency Band Complex Non integer Differentiator”: characterization and synthesis.IEEE Trans CAS-I ;47:25–40(2000). [46] YQ. Chen, K. Moore “Discretization Schemes for Fractional-Order Differentiators and Integrators”. IEEE Trans CAS-I ;49:363–7(2002). [47] TT. Hartley , CE. Lorenzo “Dynamics and Control of Initialized Fractional-Order Systems”. Nonlinear Dynamics ;29:201–33(2002). [48] C.Hwang , J.-F.Leu , S.Y. Tsay “A Note on Time-Domain Simulation of Feedback Fractional-Order Systems”. IEEE Trans Auto Contr ;47:625–31(2002). [49] I. Podlubny , I.Petras , BM. Vinagre, O’Leary P, Dorcak L. “Analogue Realizations of Fractional-Order Controllers”. Nonlinear Dynamics;29:281–96(2002). [50] Li C, Liao X, Yu J. “Synchronization of Fractional Order Chaotic Systems”. Phys Rev E ;68:067203(2003). [51] Tom T. Hartley, Carl F. Lorenzo, and Helen Killory Qammer “ Chaos in Fractional Order Chua’s System” IEEE, Tran. on circuit and systems,Vol. 42, No 8(1995).
|