跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/15 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊為任
研究生(外文):Wei-Ren Jhuang
論文名稱:整數階與分數階帶離心調速器之旋轉機械系統的渾沌同步與渾沌激發之超渾沌
論文名稱(外文):Chaos Synchronization and Chaos-Excited Hyperchaos, for Integral and Fractional Order Rotational Machine System with Centrifugal Governor
指導教授:戈正銘戈正銘引用關係
指導教授(外文):Zheng-Ming Ge
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:76
中文關鍵詞:渾沌渾沌同步渾沌控制超渾沌
外文關鍵詞:ChaosChaos SynchronizationChaos controlHyperchaos
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文研究整數階與分數階帶離心式調速器之旋轉機器系統的渾沌同步與渾沌激發之超渾沌。透過數值分析,如相圖,分叉圖,和Lyapunov指數,可以觀察到週期與渾沌運動。利用線性回饋控制與適應性控制,使得整數階系統達成渾沌同步。接著,提出一個新的概念:透過渾沌系統之狀態驅動的渾沌取代透過正弦時間函數驅動的渾沌。此研究乃一個完全新的領域,觀察到超渾沌與廣範圍的渾沌。最後,發現分數階系統的階數少於或多於原系統的狀態數目時皆存在渾沌現象。利用類似於用在整數階系統的方法,系統可以達成渾沌控制與渾沌同步。
Chaos synchronization and chaos-excited hyperchaos, for integral and fractional order rotational machine system with centrifugal governor are studied in this thesis. By applying numerical analysis such as phase portrait, bifurcation diagram and Lyapunov exponent, periodic and chaotic motions are observed. Chaos synchronization for integral order system is accomplished by employing both linear feedback control and adaptive control based on Lyapunov first approximation theorem and asymptotical stability theorem. Then a new concept of chaos driven by states of chaotic system instead of driven by sinusoidal time function is put forward. This research is a completely new field, hyperchaos and broader ranges of chaos are obtained. Finally, it is found that chaos exists in the fractional order system with order less and more than number of states of the system. By utilizing the similar scheme as that for their integral order correspondence, chaos control and chaos synchronization are accomplished.
[1] G. Chen, X. Dong, From Chaos to Order, World Scientific, New Jersey, 1998.
[2] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Science, Cambridge Univ. Press, Cambridge, 2001.
[3] G.V. Osipov, B. Hu, C. Zhou, M.V. Ivanchenko, and J. Kurths, “Three types of transitions to phase synchronization in coupled chaotic oscillators”, Phys. Rev. Lett., Vol. 91, 024101, 2003.
[4] S. Chen, D. Wnag, L. Chen, Q. Zhang, C. Wang, “Synchronizing strict-feedback chaotic system via a scalar driving signal”, Chaos, Vol. 14, pp. 539-544, 2004.
[5] G. Millerioux, J. Daafouz, “Input independent chaos synchronization of switched systems”, IEEE Trans. Automat. Contr., Vol. 49, pp. 1182-1186, 2004.
[6] S. Tang and J.M. Liu, “Chaos synchronization in semiconductor lasers with optoelectronic feedback”, IEEE J. Quantum Electron., vol. 39, pp. 708-715, 2003.
[7] Y. Wang, Z.H. Guan, and H.O. Wang, “Feedback and adaptive control for the synchronization of chen system via a single variable”, Phys. Lett. A, Vol. 312, pp. 34-40, 2003.
[8] M. Feki, “Observation-based exact synchronization of ideal and mismatched chaotic systems”, Phys. Lett. A, Vol. 309, pp. 53-60, 2003.
[9] S. Bowong and F.M.M. Kakmeni, “Synchronization of uncertain chaotic systems via backsteeping approach”, Chaos, Solitons & Fractals, Vol. 21, pp. 999-1011, 2004.
[10] H.K. Khailil, Nonlinear Systems, Prentice Hall, New Jersey, 2002.
[11] J.M.T. Thompson and H.B. Stewart, Nonlinear Dynamics and Chaos, Wiley, New York, 2002.
[12] J.C. Sprott, Chaos and Time-Series Analysis, Oxford University Press, New York, 2003.
[13] G. Chen, Controlling chaos and bifurcation in engineering systems, CRC Press, Boca Raton, 2000.
[14] T. Wu, M.S. Chen, “Chaos control of modified Chua’s circuit system”, Physica D, Vol. 164, pp. 53-58, 2002.
[15] E.V. Bondarenko and I. Yevin, “Music and control of chaos in the brain”, Physics and Control, Proceedings. 2003 International Conference , Vol. 2, pp. 497-500, 2003.
[16] H. Korn and P. Faure, “Is there chaos in the brain? II. Experimental evidence and related models”, C. R.Biologies, Vol. 326, pp. 787-840, 2003.
[17] M.W. Lee, Y. Hong, and K.A. Shore, “Experimental demonstration of VCSEL-based chaotic optical communications”, IEEE Photonics Technology Lett., Vol. 16, no. 10, pp. 2392-2394, 2004.
[18] J. Paul, S. Sivaprakasam, and K.A. Shore, “Dual-channel chaotic optical communications using external-cavity semiconductor lasers”, J. Opt. Soc. Amer. B, Vol. 21, pp. 514-521, 2004.
[19] J. Garcia-Ojavo and R. Roy, “Parallel communication with optical spatiotemporal chaos”, IEEE Trans. Circuits Syst. I, Vol. 48, pp. 1491-1497, 2001.
[20] P. Davis, Y. Liu, and T. Aida, “Versatile signal generation in chaotic optical communication devices modeled by delay-differential equations”, Nonlinear Analysis, Vol. 47, pp. 5729-5739, 2001.
[21] I. Radojicic, D. Mandic, and D. Vulic, “On the presence of deterministic chaos in HRV signals”, Computers in Cardiology 2001 , pp. 465-468.
[22] V.K. Yeragan and R. Rao, “Effect of nortriptyline and paroxetine on measures of chaos of heart rate time series in patients with panic disorder”, J. Psychosom. Res., Vol. 55, pp. 507-513, 2003.
[23] K.M. Cuomo and V. Oppenheim, “Circuit implementation of synchronized chaos with application to communication”, Phys. Rev. Lett., Vol. 71, pp. 65-68, 1993.
[24] L. Kocarev and U.Parlitz, “General approach for chaotic synchronization with application to communication”, Phys. Rev. Lett., Vol. 74, pp. 5028-5031, 1995.
[25] J. Lu, X. Wu, amd J. L��, “Synchronization of a unified chaotic system and the application in secure communication”, Phys. Lett. A 305, pp. 365-370, 2002.
[26] J. Amirazodi, , E.E. Yaz, , A. Azemi, , Y.I. Yaz, “Nonlinear observer performance in chaotic synchronization with application to secure communication”, Proceedings of the 2002 IEEE International Conference on Control Applications, IEEE. Part Vol.1, pp.76-81, 2002.
[27] G. Hu, Z. Feng, and R. Meng, “Chosen ciphertext attack on chaos communication based on chaotic synchronization”, IEEE Trans. Circuits Syst. I, Vol. 50, pp. 275-279, 2003.
[28] S. Celikovsky, G. Chen, “Secure synchronization of a class of chaotic systems from a nonlinear observer approach”, IEEE Trans. Automat. Contr., Vol. 50, pp. 76-82, 2005.
[29] H.K. Khalil, Nonlinear Systems, Third edition, Prentice Hall, New Jersey, 2002.
[30] L.M. Pecora and T.L. Carrol, “Synchronization in chaotic systems”, Phys. Rev. Lett. Vol. 64, pp. 821-824, 1990.
[31] R. Hilfer, editor, Applications of fractional calculus in physics, New Jersey, World Scientific, 2001.
[32] R.L. Bagley and R.A. Calico, “Fractional order state equations for the control of viscoelastically damped structures”. J Guid, Contr Dyn, Vol. 14, pp. 304-311, 1991.
[33] T.T.Hartley and C.F. Lorenzo, “Dynamics and control of initialized fractional-order systems”, Nonlinear Dyn, Vol.29, pp. 201-233, 2002.
[34] P. Arena, R. Caponetto, L. Fortuna, and D. Porto, “Chaos in a fractional order Duffing system”, In: Proc. ECCTD, Budapest1997, pp. 1259-1262.
[35] C. Li, X. Liao, and J. Yu, “Synchronization of fractional order chaotic systems”, Phys. Rev. E, Vol. 68, 067203, 2003.
[36] G.M. Zaslavsky, “Chaos, fractional kinetics, and anomalous transport”, Phys Rep, Vol. 371, pp. 461-580, 2002.
[37] L.S. Pontryagin, Ordinary Differential Equation, Addison-Wesley, Reading, 1962, pp. 213-220.
[38] L.A. Feng, Y. Ren, X.M. Shan, and Z.L. Qiu, “A linear feedback synchronization theorem for a class of chaotic systems”, Chaos, Solitons & Fractals, Vol. 13, pp. 723-730, 2002.
[39] C. Sarasola, F.J. Torrealdea, A. D’Anjou, A. Moujahid, and M. Grana, “Feedback synchronization of chaotic systems”, Int. J. Bifur. Chaos, Vol, 13, pp. 177-191, 2003.
[40] M.E. Yalcm, J.A.K. Suykens, J. Vandewalle, “Master-slave synchronization of Lur’s systems with time-delay”, Int. J. Bifur. Chaos, Vol, 11, pp. 1707-1721, 2001.
[41] X. Liao and G. Chen, “Chaos synchronization of general Lur’e systems via time-delay feedback control”, Int. J. Bifur. Chaos, Vol, 13, pp. 207-213, 2003.
[42] G.P. Jiang, W.X. Zheng, and G.. Chen, “Global chaos synchronization with channel time-delay”, Chaos, Solitons & Fractals, Vol. 20, pp. 267-275, 2004.
[43] S. Chen and J. Luぴ, ‘‘Parameters identification and synchronization of chaotic system based upon adaptive control’’, Phys. Lett. A, Vol. 299, pp. 353-358, 2002.
[44] Lian et. Al., “Adaptive synchronization design for chaotic systems via a scalar signal”, IEEE Trans. Circle Syst. I, Vol. 49, pp. 17-27, 2002.
[45] F. Anstett, G. Millerioux, and G. Bloch, “Global adaptive synchronization based upon ploytopic observers”, IEEE ISCAS 2004, Vol. 4, pp. 728-731, 2004.
[46] Tao Yang and Leon O. Chua, “Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to Secure communication”, IEEE Trans. Circuits Syst. I, Vol. 44, pp. 976-988, 1997.
[47] A. Khadra, X. Liu, amd X. Shen, “ Application of impulsive synchronization to communication security”, IEEE Trans. Circuits Syst. I, Vol. 50, pp. 341-351, 2003.
[48] C. Li, X. Liao and R. Zhang, “Impulsive synchronization of nonlinear coupled chaotic systems”, Phys. Lett. A, Vol. 328, pp. 47-50, 2004.
[49] C. Li and G. Chen, “Chaos in the fractional order Chen system and its control”, Chaos, Solitons & Fractals, Vol. 22, pp. 549-554, 2004.
[50] K.B. Oldham and J. Spanier, The fractional Calculus. San Diego, CA: Academic, 1974.
[51] A. Charef, H.H. Sun, Y.Y. Tsao, and B. Onaral, “Fractal system as represented by singularity function”, IEEE Trans. Automat. Contr., vol. 37, pp. 1465-1470, Sept. 1992.
[52] T.T. Hartley, C.F. Lorenzo, and H.K. Qammer, “Chaos in a fractional order Chua’s system”, IEEE Trans CAS-I, Vol. 42, pp. 485-490, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 整數階與分數階電動機系統混沌同步與混沌控制
2. 應用模糊運算於勞倫茲主動同步控制之研究
3. 新Double-Froude系統的渾沌現象,應用GYC部分區域穩定理論的渾沌同步及控制,以Legendre函數為參數的Rössler系統之超渾沌現象與藉適應控制之Lü系統的陰陽廣義同步
4. 應用GYC部分區域穩定理論於新Froude-Duffing系統之廣義同步與控制,以Bessel函數為參數的Rössler系統之超渾沌,陰陽Rössler系統的渾沌及實用混合投影廣義同步
5. 新延遲Ikeda-Mackey-Glass系統的渾沌、渾沌同步、渾沌控制、參數估測,與應用GYC部分區域穩定理論實現新Ikeda-Lorenz系統之渾沌廣義同步及渾沌控制
6. 新Duffing-VanderPol系統的渾沌現象,實用渾沌廣義同步,辛同步,應用GYC部分區域穩定理論的渾沌同步及控制
7. 量子胞神經網路奈米系統之超渾沌、渾沌控制、渾沌化與同步研究
8. 由本身系統之增項及代換達成之Lorenz系統超渾沌,渾沌控制及渾沌同步
9. 整數階與分數階雙Mackey-Glass系統的渾沌,延遲,超前,非耦合渾沌同步及控制
10. 整數階與分數階變革式心搏系統的渾沌及其同步與反控制
11. 六邊形離心調速器的旋轉機械之渾沌控制及渾沌同步
12. 陀螺體系統的渾沌、渾沌控制、同步及渾沌反控制研究
13. 揚聲器機電系統之穩定性,渾沌,渾沌控制及同步研究
14. 彈簧單擺系統之穩定性,渾沌,渾沌控制與同步研究
15. 測震儀之穩定性,渾沌,渾沌控制與同步研究
 
無相關期刊