|
[1] G. Chen, X. Dong, From Chaos to Order, World Scientific, New Jersey, 1998. [2] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Science, Cambridge Univ. Press, Cambridge, 2001. [3] G.V. Osipov, B. Hu, C. Zhou, M.V. Ivanchenko, and J. Kurths, “Three types of transitions to phase synchronization in coupled chaotic oscillators”, Phys. Rev. Lett., Vol. 91, 024101, 2003. [4] S. Chen, D. Wnag, L. Chen, Q. Zhang, C. Wang, “Synchronizing strict-feedback chaotic system via a scalar driving signal”, Chaos, Vol. 14, pp. 539-544, 2004. [5] G. Millerioux, J. Daafouz, “Input independent chaos synchronization of switched systems”, IEEE Trans. Automat. Contr., Vol. 49, pp. 1182-1186, 2004. [6] S. Tang and J.M. Liu, “Chaos synchronization in semiconductor lasers with optoelectronic feedback”, IEEE J. Quantum Electron., vol. 39, pp. 708-715, 2003. [7] Y. Wang, Z.H. Guan, and H.O. Wang, “Feedback and adaptive control for the synchronization of chen system via a single variable”, Phys. Lett. A, Vol. 312, pp. 34-40, 2003. [8] M. Feki, “Observation-based exact synchronization of ideal and mismatched chaotic systems”, Phys. Lett. A, Vol. 309, pp. 53-60, 2003. [9] S. Bowong and F.M.M. Kakmeni, “Synchronization of uncertain chaotic systems via backsteeping approach”, Chaos, Solitons & Fractals, Vol. 21, pp. 999-1011, 2004. [10] H.K. Khailil, Nonlinear Systems, Prentice Hall, New Jersey, 2002. [11] J.M.T. Thompson and H.B. Stewart, Nonlinear Dynamics and Chaos, Wiley, New York, 2002. [12] J.C. Sprott, Chaos and Time-Series Analysis, Oxford University Press, New York, 2003. [13] G. Chen, Controlling chaos and bifurcation in engineering systems, CRC Press, Boca Raton, 2000. [14] T. Wu, M.S. Chen, “Chaos control of modified Chua’s circuit system”, Physica D, Vol. 164, pp. 53-58, 2002. [15] E.V. Bondarenko and I. Yevin, “Music and control of chaos in the brain”, Physics and Control, Proceedings. 2003 International Conference , Vol. 2, pp. 497-500, 2003. [16] H. Korn and P. Faure, “Is there chaos in the brain? II. Experimental evidence and related models”, C. R.Biologies, Vol. 326, pp. 787-840, 2003. [17] M.W. Lee, Y. Hong, and K.A. Shore, “Experimental demonstration of VCSEL-based chaotic optical communications”, IEEE Photonics Technology Lett., Vol. 16, no. 10, pp. 2392-2394, 2004. [18] J. Paul, S. Sivaprakasam, and K.A. Shore, “Dual-channel chaotic optical communications using external-cavity semiconductor lasers”, J. Opt. Soc. Amer. B, Vol. 21, pp. 514-521, 2004. [19] J. Garcia-Ojavo and R. Roy, “Parallel communication with optical spatiotemporal chaos”, IEEE Trans. Circuits Syst. I, Vol. 48, pp. 1491-1497, 2001. [20] P. Davis, Y. Liu, and T. Aida, “Versatile signal generation in chaotic optical communication devices modeled by delay-differential equations”, Nonlinear Analysis, Vol. 47, pp. 5729-5739, 2001. [21] I. Radojicic, D. Mandic, and D. Vulic, “On the presence of deterministic chaos in HRV signals”, Computers in Cardiology 2001 , pp. 465-468. [22] V.K. Yeragan and R. Rao, “Effect of nortriptyline and paroxetine on measures of chaos of heart rate time series in patients with panic disorder”, J. Psychosom. Res., Vol. 55, pp. 507-513, 2003. [23] K.M. Cuomo and V. Oppenheim, “Circuit implementation of synchronized chaos with application to communication”, Phys. Rev. Lett., Vol. 71, pp. 65-68, 1993. [24] L. Kocarev and U.Parlitz, “General approach for chaotic synchronization with application to communication”, Phys. Rev. Lett., Vol. 74, pp. 5028-5031, 1995. [25] J. Lu, X. Wu, amd J. L��, “Synchronization of a unified chaotic system and the application in secure communication”, Phys. Lett. A 305, pp. 365-370, 2002. [26] J. Amirazodi, , E.E. Yaz, , A. Azemi, , Y.I. Yaz, “Nonlinear observer performance in chaotic synchronization with application to secure communication”, Proceedings of the 2002 IEEE International Conference on Control Applications, IEEE. Part Vol.1, pp.76-81, 2002. [27] G. Hu, Z. Feng, and R. Meng, “Chosen ciphertext attack on chaos communication based on chaotic synchronization”, IEEE Trans. Circuits Syst. I, Vol. 50, pp. 275-279, 2003. [28] S. Celikovsky, G. Chen, “Secure synchronization of a class of chaotic systems from a nonlinear observer approach”, IEEE Trans. Automat. Contr., Vol. 50, pp. 76-82, 2005. [29] H.K. Khalil, Nonlinear Systems, Third edition, Prentice Hall, New Jersey, 2002. [30] L.M. Pecora and T.L. Carrol, “Synchronization in chaotic systems”, Phys. Rev. Lett. Vol. 64, pp. 821-824, 1990. [31] R. Hilfer, editor, Applications of fractional calculus in physics, New Jersey, World Scientific, 2001. [32] R.L. Bagley and R.A. Calico, “Fractional order state equations for the control of viscoelastically damped structures”. J Guid, Contr Dyn, Vol. 14, pp. 304-311, 1991. [33] T.T.Hartley and C.F. Lorenzo, “Dynamics and control of initialized fractional-order systems”, Nonlinear Dyn, Vol.29, pp. 201-233, 2002. [34] P. Arena, R. Caponetto, L. Fortuna, and D. Porto, “Chaos in a fractional order Duffing system”, In: Proc. ECCTD, Budapest1997, pp. 1259-1262. [35] C. Li, X. Liao, and J. Yu, “Synchronization of fractional order chaotic systems”, Phys. Rev. E, Vol. 68, 067203, 2003. [36] G.M. Zaslavsky, “Chaos, fractional kinetics, and anomalous transport”, Phys Rep, Vol. 371, pp. 461-580, 2002. [37] L.S. Pontryagin, Ordinary Differential Equation, Addison-Wesley, Reading, 1962, pp. 213-220. [38] L.A. Feng, Y. Ren, X.M. Shan, and Z.L. Qiu, “A linear feedback synchronization theorem for a class of chaotic systems”, Chaos, Solitons & Fractals, Vol. 13, pp. 723-730, 2002. [39] C. Sarasola, F.J. Torrealdea, A. D’Anjou, A. Moujahid, and M. Grana, “Feedback synchronization of chaotic systems”, Int. J. Bifur. Chaos, Vol, 13, pp. 177-191, 2003. [40] M.E. Yalcm, J.A.K. Suykens, J. Vandewalle, “Master-slave synchronization of Lur’s systems with time-delay”, Int. J. Bifur. Chaos, Vol, 11, pp. 1707-1721, 2001. [41] X. Liao and G. Chen, “Chaos synchronization of general Lur’e systems via time-delay feedback control”, Int. J. Bifur. Chaos, Vol, 13, pp. 207-213, 2003. [42] G.P. Jiang, W.X. Zheng, and G.. Chen, “Global chaos synchronization with channel time-delay”, Chaos, Solitons & Fractals, Vol. 20, pp. 267-275, 2004. [43] S. Chen and J. Luぴ, ‘‘Parameters identification and synchronization of chaotic system based upon adaptive control’’, Phys. Lett. A, Vol. 299, pp. 353-358, 2002. [44] Lian et. Al., “Adaptive synchronization design for chaotic systems via a scalar signal”, IEEE Trans. Circle Syst. I, Vol. 49, pp. 17-27, 2002. [45] F. Anstett, G. Millerioux, and G. Bloch, “Global adaptive synchronization based upon ploytopic observers”, IEEE ISCAS 2004, Vol. 4, pp. 728-731, 2004. [46] Tao Yang and Leon O. Chua, “Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to Secure communication”, IEEE Trans. Circuits Syst. I, Vol. 44, pp. 976-988, 1997. [47] A. Khadra, X. Liu, amd X. Shen, “ Application of impulsive synchronization to communication security”, IEEE Trans. Circuits Syst. I, Vol. 50, pp. 341-351, 2003. [48] C. Li, X. Liao and R. Zhang, “Impulsive synchronization of nonlinear coupled chaotic systems”, Phys. Lett. A, Vol. 328, pp. 47-50, 2004. [49] C. Li and G. Chen, “Chaos in the fractional order Chen system and its control”, Chaos, Solitons & Fractals, Vol. 22, pp. 549-554, 2004. [50] K.B. Oldham and J. Spanier, The fractional Calculus. San Diego, CA: Academic, 1974. [51] A. Charef, H.H. Sun, Y.Y. Tsao, and B. Onaral, “Fractal system as represented by singularity function”, IEEE Trans. Automat. Contr., vol. 37, pp. 1465-1470, Sept. 1992. [52] T.T. Hartley, C.F. Lorenzo, and H.K. Qammer, “Chaos in a fractional order Chua’s system”, IEEE Trans CAS-I, Vol. 42, pp. 485-490, 1995.
|