跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 18:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張筑涵
研究生(外文):Chu-Han Chang
論文名稱:突變研究與探討煙麴菌幾丁聚醣酵素之催化必要殘基
論文名稱(外文):Mutagenic study and exploration of the catalytic essential residues of Aspergillus chitosanase
指導教授:李耀坤李耀坤引用關係
指導教授(外文):Yaw-Kuen Li
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:116
中文關鍵詞:催化必要殘基煙麴菌幾丁聚醣酵素
外文關鍵詞:catalytic essential residuesAspergillus fumigatuschitosanase
相關次數:
  • 被引用被引用:1
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
幾丁聚醣水解酵素(chitosanase)是煙麴菌(Aspergillus fumigatus)中擁有極高工業應用性的酵素,屬於黴菌幾丁聚醣水解酵素所屬的GH-75家族。煙麴菌的幾丁聚醣水解酵素基因被克隆出且置於大腸桿菌中表現並定性。水解產物利用核磁共振光譜以及質譜定序方法,證實此酵素是以反轉機制水解以及切GlcNAc-GlcN和GlcN-GlcN鍵而不切GlcNAc-GlcNAc和GlcN-GlcNAc linkages鍵。重組的酵素在大腸桿菌中以內含體(inclusion body)形式表現,利用5M尿素可救回35%的活性。另外,此酵素也在另一訊息胜肽表現系統中以胞內可溶蛋白質形式表現。將GH-75家族中五條幾丁聚醣水解酵素序列作比對,篩選十個保留度最高的胺基酸做定點突變。因為D160N與E169Q明顯失去活性且其他突變點仍保有40%以上活性。而利用circular dichroism證明不是因為二級結構的改變造成。另外,由理論計算方式也的到相同預測結果。而表面電漿共振儀證明D160N與wild type對於幾丁聚醣的三醣與四醣有相同的親和特性。這些結果證明Asp160與Glu169在此酵素中扮演重要的催化角色。最後,由多方資料整合歸納出Asp160是catalytic base而Glu169 是proton donor。
A powerful chitosanase for the preparation of chitooligosaccharide was previously purified from Aspergillus fumigatus. The corresponding gene was also cloned and the enzyme was further classified into glycosyl hydrolase family 75. The recombinant chitosanase was over-expressed in E. coli with a form of inclusion body, which was rescued by treating with 5 M urea and subsequently purified by cation-exchanged chromatography. Alternatively, the recombinant enzymes were also expressed in a pRSET_SP system containing a signal peptide. The recombinant chitosanases were found to produce as soluble protein intracellularly. A time-course 1H-NMR experiment on the enzymatic formation of chitooligosaccharides revealed that the mechanism of the enzyme involved an inversion of an anomeric configuration. Through analysis of the products and their corresponding methylated derivatives with LC/MS/MS, the pattern of enzymatic hydrolysis of the GlcNAc-GlcN and GlcN-GlcN linkages in chitosan were unequivocally determined, whereas the GlcNAc-GlcNAc and GlcN-GlcNAc linkages were not digestible. Site-directed mutagenic studies on the ten conserved carboxylic amino acids of the family were performed. Among them, the mutants of D160N and E169Q lost all activity, whereas the other mutants retained > 40 % activity of the wild-type chitosanase. Measurements of circular dichroism of D160N, E169Q, wild-type enzyme and other active mutants yielded similar spectra, indicating that activity loss of the two mutants was not due to the change of protein structure. Surface plasma resonance (SPR) studies revealed that the binding properties of D160N and the wild type enzyme with either chitotetramer or chitotrimer are comparable. We conclude that Asp160 and Glu169 are the two essential residues of A. fumigatus chitosanase.
Abstract (in cChinese)---------------------------------------------------------Ⅰ
Abstract (in English)----------------------------------------------------------Ⅱ
Content---------------------------------------------------------------------------Ⅲ
Chart content-------------------------------------------------------------------Ⅴ
Chapter 1 Introduction
1-1 Chitosan oligosaccharides-----------------------------------------------1
1-2 Chitosanase----------------------------------------------------------------5
1-3 Aspergillus fumigatus---------------------------------------------------14
1-4 Escherichia coli expression system of recombinant chitosanase
from Aspergillus fumigatus--------------------------------------------16
1-5 The objective of this study---------------------------------------------19
Chapter 2 Material and method
2-0 General description------------------------------------------------------20
2-1 Site-directed mutagenesis-----------------------------------------------22
2-2 Expression and purification of chitosanase---------------------------25
2-3 Enzyme activity test by DNS-------------------------------------------30
2-4 Mass analysis-------------------------------------------------------------31
2-5 Investigation of secondary structure-----------------------------------33
2-6 Investigation of anomeric configuration by NMR-------------------35
2-7 Characterization of enzymes by SPR----------------------------------36
2-8 Chemical label------------------------------------------------------------43
Chapter 3 Results and discussion
PartⅠProduction of enzyme
3-1 Site-directed mutagenesis-----------------------------------------------47
3-2 Inclusion body expression system-------------------------------------52
3-3 The pRSET_SP (PSP) expression system ----------------------------59
PartⅡCharacterization of enzyme
3-4 Analysis of activity and structure--------------------------------------68
3-5 Investigation of anomeric configuration by NMR ------------------71
3-6 Identification of hydrolyte pattern by LC/MS/MS ------------------74
3-7 Investigation of the binding properties of chitosanases by SPR---78
3-8 Prediction of Aspergillus chitosanase topology----------------------80
3-9 Chemical label------------------------------------------------------------84

Chapter 4 Conclusion------------------------------------------------------87
Chapter 5 Reference--------------------------------------------------------90
Appendix------------------------------------------------------------------------97
1. van Aalten, D.M.F., Synstad, B., Brurberg, M.B., Hough, E., Riise, B.W., Eijsink, V.G.H., andWierenga, R.K. (2000) Structure of a two-domain chitotriosidase from Serratia marcescens at 1.9 Å resolution. Proc. Natl. Acad. Sci. USA. 97, 5842-5847.
2. Adachi, W., Sakihama, Y., Shimizu, S., Sunami, T., Fukazawa, T., Suzuki, M., Yatsunami, R., Nakamura, S., and Take´naka, A. (2004) Crystal Structure of Family GH-8 Chitosanase with Subclass II Specificity from Bacillus sp. K17. J. Mol. Biol. 343, 785–795
3. Aiba S. I. (1994) Preparation of N-acetylchitooligosaccharides by hydrolysis of chitosan with chitinase followed by N-acetylation. Carbohydr. Res. 265: 323-328.
4. Amorim, R. V. S., Souza, W., Fukushima, K., and Campos-Takaki, G. M. (2001) Faster chitosan production by mucoralean strains in submerged culture. Braz. J. Microbiol. 32, 20-23.
5. Bennett, J. H. (1842) On the parasitic vegetable structures found growing in living animals. Trans Roy Soc Edinburgh. 15, 277-279.
6. Boucher, I., Fukamizo, T., Honda, Y., Willick, G. E., Neugebauer, W. A., and Brzezinski, R. (1995) J. Biol. Chem. 270, 31077-31082.
7. Carr, J. P., and Klessig, D.F. (1989) The pathogenesis related proteins of plants. Genetic Engineering. Principles and Methods. 1, 65-109.
8. Cheng, C.Y., and Li, Y. K. (2000) An Aspergillus chitosanase with potential for large-scale preparation of chitosan oligosaccharides. Biotechnol. Appl. Bioc. 32: 197-203.
9. Cheng C. Y., and Li Y. K. (2003) Aspergillus fumigatus endo-chitosanase precursor (csn) gene, complete cds. NCBI DataBank: accession number AY190324.
10. Cheng, C. Y. (2003) Exploration of chitosanases from microorganisms---microbial screening, protein characterization, molecular cloning and industrial applications. 鄭至玉,國立交通大學應用化學系博士論文,九十二年六月。
11. Chir, J., Withers, S. G., Wan, J-F, and Li, Y-K. (2002) Biochem. J. 365, 857-863.
12. Choi, B. K., Kim, K. Y., Yoo Y. J., Oh S. J., Choi J. H., and Kim C. Y. (2001) In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. Int. J. Antimicrob. Ag. 18: 553-557.
13. Collins, T., Meuwis, M. A., Stals, I., Claeyssens, M., Feller, G., and Gerday, C. (2002) J. Biol. Chem. 277, 35133–35139.
14. Coutinho, P. M. and Henrissat, B. (1999) Carbohydrate-Active Enzymes server at URL: http://afmb.cnrs-mrs.fr/~cazy/CAZY/index.html
15. Davies, G. D., Strynadka, N.C, and James, M.N. (1991) Lysozyme revisited: crystallographic evidence for distortion of an N-acetylmuramic acid residue bound in site D. J. Mol. Biol. 220, 401-424.
16. Davies, G., and Henrissat, B. (1995) Structures and mechanisms of glycosyl hydrolases. Structure. 3, 853-859.
17. Davies, G. J., Wilson, K. S. and Henrissat, B. (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem. J. 321, 557-559.
18. Eom, T. K., Lee, K. M. (2003) Characteristics of chitosanases from Aspergillus fumigatus KB-1. Arch. Pharm. Res. 12, 1036-41.
19. Forsyth, W. R., Antosiewicz, J. M., and Robertson, A. D. (2002) Empirical relationships between protein structure and carboxyl pKa values in protein. PROTEINS: Structure, Function, and Genetics 48, 388–403.
20. Fukamizo, T., Honda, Y., Goto, S., Boucher, I., and Brzezinski, R. (1995) Reaction mechanism of chitosanase from Streptomyces sp. N174. Biochem. J. 311, 377–383).
21. Fukamizo, T., Juffer, A. H., Vogel, H. J., Honda, Y., Tremblay, H., Boucher, I., Neugebauer, W. A., and Brzezinski, R. (2000) Theoretical calculation of pk(a) reveals an important role of Arg (205) in the activity and stability of Streptomyces sp N174 chitosanase. J. Biol. Chem. 275: 25633-25640.
22. Fukamizo, T. (2000) Chitinolytic Enzymes Catalysis, Substrate Binding, and their Application. Curr. Protein Pept. Sci. 1, 105-124.
23. Grenier, J., and Asselin, A. (1990) Some pathogenesis-related proteins are chitosanases with lytic activity against fungal spores. Mol. Plant-microbe interact. 3, 401-407.
24. Grenier, J., Benhamou, N., and Asselin, A. (1991) Colloidal gold-complexed chitosanase: a new probe for ultrastructural localization of chitosan in fungi. J. Gen. Microbiol. 137, 2007-2015.
25. Hinson, K. F. W., Moon, A. J., and Plummer, N. S. (1952) Broncho-pulmonary aspergillosis. A review and a report of eight new cases. Thorax, 7, 317-333.
26. Hung, T. H., Chang, Y, M., Sung, H. Y., and Chang, C. T. (2002) Purification and characterization of hydrolase with chitinase and chitosanase activity from commercial stem bromelain. J. Agr. Food. Chem. 50 (16): 4666-4673.
27. Ilyina, A. V., Tikhonov, V. E., Albulov, A. I., and Varlamov, V. P. (2000) Enzymic preparation of acid-free-water-soluble chitosan. Process Biochem. 35: 563-568.
28. Jaques, A.K., Fukumazo, T., Hall, D., Barton, R.C., Escott, G.E., Parkinson, T., Hitchcock, C.A., and Adams, D.J. (2003) Disruption of the gene encoding the ChiB1 chitinase of Aspergillus fumigatus and characterization of a recombinant gene product. Microbiology. 149, 2931-2939.
29. Jeon, Y. J., and Kim, S. K. (2000) Continuous production of chitooligosaccharides using a dual reactor system. Process Biochem. 35: 623-632.
30. Jeon, Y. J., Park, P. J., and Kim, S. K. (2001) Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohyd. Polym. 44: 71-76.
31. Juffer, A. H. (1998) Theoretical calculations of acid-dissociation constants of proteins. Biochem. Cell Biol. 76, 198–209.
32. Kim, S. J., Kang, S. Y., Park, S. L., Shin, T., and Ko, Y. H. (1998-1) Effects of chitooligosaccharides on liver function in the mouse. Korean J. Food Sci. Technol. 30: 693-696.
33. Kim, S. Y., Shon, D. H., and Lee, K. H. (1998-2) Purification and characteristics of two types of chitosanases from Aspergillus fumigatus KH-94. J. Microbiol. Biotechnol. 8, 568-574.
34. Kim, S. J., Kang, S. Y., Park, J. G., Park, S. L., Lee, Y. D., and Ko, Y. H. (1999) Effects of chitooligosaccharides on carbon tetrachloride Induced liver injury in rats. The 1999 industry-academy joint research program of the Small and Medium Sized Business Support Center of Jeju National University.
35. Kimoto, H., Kusaoke, H., Yamamoto, I., Fujii, Y., Onodera T., and Taketo, A. (2002) Biochemical and genetic properties of Paenibacillus glycosyl hydrolase having chitosanase activity and discoidin domain. J. Biol. Chem. 277: 14695-14702.
36. Latgé, J. P. (2001) The pathobiology of Aspergillus fumigatus. TRENDS in Microbiology. 9, No.8.
37. Matsumura, S., Yao, E., Toshima, K. (1999) One-step preparation of alkyl β-d-glucosaminide by the transglycosylation of chitosan and alcohol using purified exo-β-d-glucosaminidase. Biotechnology Letters, 21, 451-456.
38. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 3: 426-429.
39. Monaghan, R. L., Eveleigh D. E., Tewari R. P., and Reese E.T. Chitosanase, a novel enzyme. Nat New Biol. 1973, 142, 78-80.
40. Muzzarelli, R. A. A., Jeuniaux C., and Gooday G. W. (1985) Chitin in nature and technology. PLENUM PRESS, NEW YORK.
41. Nam, KS, Choi, YR, and Shon, YH. (2001) Evaluation of the antimutagenic potential of chitosan oligosaccharide: Rec, Ames and Umu tests. Biotechnol. Lett. 23: 971-975.
42. Nanjo, F., Katsumi, R., and Sakai, K. (1990) Purification and characterization of an exo-.beta.-D-glucosaminidase, a novel type of enzyme, from Nocardia orientalis. J. Biol. Chem. 265, 10088-10094
43. No, H. K., Park, N. Y., Lee, S. H., Hwang, H. J., and Meyers, S. P. (2002) Antibacterial activities of chitosans and chitosan oligomers with different molecular weights on spoilage bacteria isolated from tofu. J. Food Sci. 67: 1511-1514.
44. Osswald, W. F., Shapiro, J. P., Doostdar, H., McDonald, R. E., Niedz, R. P., Nairn, C. J., Hearn, C. J., and Mayer, R. T. (1994) Identification and characterization of acidic hydrolases with chitinase and chitosanase activities from sweet orange callus-tissue. Plant Cell Physiol. 35: 811-820.
45. Perlman, D. and Halvorson, H. O. (1983) A putative signal peptidase recognition site sequence in eukaryotic and prokaryotic signal peptides. J. Mol. Biol. 167, 391-409.
46. Perrakis, A., Tews, I., Dauter, Z., Oppenheim, A. B., Chet, I., Wilson, K. S., and Vorgias, C. E. (1994) Crystal structure of a bacterial chitinase at 2.3 Å. Resolution. Structure, 2, 1169-1180.
47. Rankin, N. E. (1953) Disseminated aspergillosis and moniliasis associated with agranulocytosis and antibiotic therapy. Br Med J. 25, 918-919.
48. Rhoades, J., and Roller, S. (2000) Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl. Environ. Microb. 66: 80-86.
49. Rivas, L. A., Parro, V., Moreno, P. M., and Mellado, R. P. (2000) The Bacillus subtilis 168 csn gene encodes a chitosanase with similar properties to a Streptomyces enzyme. Microbiol. 146: 2929-2936.
50. Russell, D. H (1994) Experimental mass spectrometry. Plenum Press. New York and London.
51. Selitrennikoff, C. P. (2001) Antifungal proteins. Appl. Environ. Microb. 67: 2883-2894.
52. Shimosaka, M., Nogawa, M., Ohno, Y., and Okazaki, M. (1993) Chitosanase from the plant pathogenic fungus, Fusarium solani f. sp. phaseoli--purification and some properties. Biosci. Biotechnol. Biochem. 57, 231-235.
53. Somashekar, D., and Joseph, R. (1996) Chitosanases-properties and applications: A review. Bioresour. Technol. 55: 35-45.
54. Sun, L., Adams, B., Gurnon, J. R., Ye, Y., and Van Etten, J. L. (1999) Characterization of two chitinase genes and one chitosanase gene encoded by Chlorella Virus PBCV-1. Virology. 263: 376-387.
55. Suntornsuk, W., Pochanavanich, P., and Suntornsuk, L. (2002) Fungal chitosan production on food processing by-products. Process. Biochem. 37: 727-729.
56. Suzuki, K., Mikami, T., Okawa, Y., Tokoro, A., Suzuki, S., and Suzuki, M. (1986) Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr. Res. 151: 403-408.
57. Tang, C. Y., Lu, C. L., Chang, M. D. T., Tsai, Y. T., Sun, Y. J., Chao, K. M., Chang, J. M., Chiou, Y. H., Wu, C.M., Chang, H.T. and Chou, W. I. (2003) Constrained multiple sequence alignment tool development and its application to RNase family alignment. J. Bioinform. Comput. Biol. 1, 267-287.
58. Terwisscha van Scheltinga, A.C., Hennig, M., and Dijkstra, B.W. (1996) The 1.8 Å resolution structure of hevamine, a plant chitinase/lysozyme and analysis of the conserved sequence and structure motifs of glycosyl hydrolase family 18. J. Mol. Biol. 262, 243-257.
59. Tsai, Y. T., Huang, Y. P., Yu, C. T., and Lu, C. L. (2004) MuSiC: a tool for multiple sequence alignment with constraints. Bioinformatics, 20, 2309-2311.
60. Ueda, M., Kojima, M., Yoshikawa, T., Mitsuda, N., Araki, K., Kawaguchi, T., Miyatake, K., Arai, M., and Fukamizo, T. (2003) A novel type of family 19 chitinase from Aeromonas sp. No.10S-24: Cloning, sequence, expression, and the enzymatic properties. Eur. J. Biochem. 270, 2513-2520.
61. Wang, Q., Graham, R. W., Trimbar, D., Warren, R. A. J., and Withers, S. G. (1994) Changing enzymatic reaction mechanisms by mutagenesis: conversion of a retaining glucosidase to an inverting enzyme. J. Am. Chem. Soc. 116, 11594-11595.
62. Wang, S.-Y., Wu, S.J., Thottappilly, G., Locy, R. D., and Singh, N. K. (2001) Molecular cloning and structural analysis of the gene encoding Bacillus cereus exochitinase Chi36. J. of bioscience and bioengineering. 92, 59-66.
63. Warren, R. A. J. (1995) Microbial hydrolysis of polysaccharides. Annu. Rev. Microbiol. 50:183-212.
64. Wu, Y. J. (2002) Charaterization of mutated chitinase from Serratia Marcescens 吳岳進 國立交通大學應用化學研究所碩士論文 中華民國九十一年八月
65. Xia, G., Jin, C., Zhou, J., Yang, S., Zhang, S. and Jin, C. (2001) A novel chitinase having a unique mode of action from Aspergillus fumigatis YJ-407. Eur. J. Biochem. 268, 4079-4085.
66. Yamada, T., Chuchird, N., Kawasaki, T., Nishida, K., and Hiramatsu, S. (1999) Chlorella viruses as a source of novel enzymes. J. Biosci. Bioeng. 88: 353-361
67. Zhang, H., Du, Y. G., Yu, X. J., Mitsutomi, M., and Aiba, S. (1999) Preparation of chitooligosaccharides from chitosan by a complex enzyme. Carbohyd. Res. 320: 257-260.
68. Zikakis, J. P. (1984) Chitin, chitosan, and related enzymes. ACADEMIC PRESS, INC. (LONDON) LTD.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top