跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 00:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡國沛
論文名稱:以密閉式藻類毒性試驗方法評估有機物之毒性與結構-活性關係之研究
論文名稱(外文):The Study of Toxicity Assessment of Organic Chemicals Using a Closed-System Algal Test and the Quantitative Structure-Activity Relationships
指導教授:陳重元
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:149
中文關鍵詞:月芽藻半至死濃度基線毒性超額毒性定量結構與活性關係非極性麻醉有機物
外文關鍵詞:Pseudokirchneriella subcapitataEC50baseline toxicityexcess toxicityQSARNon polar narcosis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:493
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:1
此篇研究歸納本實驗室以月芽藻 (Pseudokirchneriella subcapitata)所進行之48小時密閉式毒性試驗所得到的結果,利用藻細胞的數量變化 (Final yield)做為觀測終點,藉由Probit模式求出半致死濃度 (50% Effect concentration,EC50),並將九十一種有機物的毒性機制分成五大類,共包含了Non polar narcosis、Polar narcosis、Oxidative phosphorylation uncoupling、Electrophilic/Proelectrophilic、和Respiratory inhibition。對於毒性機制屬於Non polar narcosis的有機物,將其毒性試驗後所得到的log(1/EC50),與辛醇-水係數 (1-octanol/water partition coefficient,log P)進行回歸分析,找出基線毒性 (Baseline toxicity)方程式:
log(1/EC50) = 0.739 log P + 2.051,n= 43,R2 = 0.860。
本研究利用有機物的超額毒性 (Excess toxicity),與上述所求得的基線毒性比較之後,可發現醛類、酚類和腈類的毒性皆高於基線毒性一個order以上。而從各種有機物的log ACR中,可發現月芽藻對酮類的毒性容忍範圍較小,對醛類的毒性容忍範圍較大。
本研究選用不同的物理和化學相關參數,包括log P、Elumo、Ehomo、EE、CCRe、dipole、R、πH、∑αH、∑βH,針對上述的五種毒性機制,進行定量結構與活性關係 (Quantitative Structure-Activity Relationship, QSAR)之分析,討論有機物毒性與參數之間的相關性,進而找出最適合預測毒性的方程式。
最後,參考其他文獻中,以不同的生物體所進行毒性試驗的結果,與本研究結果比較,發現除了水蚤 (Daphnia magna)對於苯胺類的毒性較敏感之外,本實驗方法對於大部份的有機物和試驗物種,在毒性偵測上,均較其他實驗方法來得敏感;同時亦發現在不同的毒性機制下,本研究方法與其他物種的毒性試驗結果,有很高的相關性,尤其是毒性機制屬於Non polar narcosis的有機物,以fathead minnow (Pimephales promelas)與本研究結果的相關性最高,可做為替代物種 (Surrogate)選擇的參考。
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3

第二章 文獻回顧 4
2.1 常用的毒性試驗物種 4
2.2 藻類毒性試驗 7
2.2.1 試驗物種簡介 7
2.2.2 藻類計數方法 7
2.2.3 藻類毒性試驗方式 9
2.2.4 試驗中的重要參數 11
2.3 有機物結構對毒性的影響 15
2.4 定量結構-活性關係 (QSAR) 16
2.5 QSAR在環境毒理學上的應用 20
2.6 Surrogate在環境毒理學上的應用 23

第三章 基本理論 25
3.1 毒性試驗終點種類 25
3.2 毒性預測模式 26

第四章 實驗設備與方法 28
4.1 實驗設備與材料 28
4.2 毒性試驗藻種 35
4.3 培養基質的配置 35
4.4 實驗前準備工作 37
4.5 實驗條件控制 37
4.6 實驗方法 39
4.7 實驗步驟 39
4.7.1 連續式母槽的培養 39
4.7.2 藻類毒性試驗 40
4.8 實驗的品保與品管 43

第五章 結果與討論 44
5.1 二十種有機毒物的試驗結果 44
5.2 二十種有機物毒性與物化參數的關係 48
5.3 二十種有機物毒性敏感性的比較 50
5.4 九十一種有機物的分類 54
5.5 基線毒性與其他毒性的比較 67
5.5.1 本研究所得到的基線毒性 67
5.5.2 基線毒性的outliers 67
5.5.3 基線毒性中不屬於Non polar narcosis的有機物 69
5.6 各類有機物的相對毒性 71
5.6.1 超額毒性 (Excess toxicity) 71
5.6.2 月芽藻對有機物毒性的容忍範圍 72
5.7 有機物毒性與物化參數的關係 78
5.7.1 不同毒性機制下的毒性與單一物化參數的關係 78
5.7.2 不同毒性機制下的毒性與多種物化參數的關係 80
5.7.3 結構相似的有機物毒性與單一物化參數的關係 82
5.7.3.1 酚類毒性與解離常數的關係 82
5.7.3.2 苯胺類毒性與蒸氣壓的關係 82
5.7.3.3 腈類毒性與Elumo和Ehomo的 82
5.7.3.4 氯酚類毒性與log P的關係 83
5.7.4 有機物結構與毒性的關係 88
5.8 毒性試驗敏感度的比較 90
5.8.1 月芽藻毒性試驗之間的敏感性 90
5.8.2 本研究方法與其他毒性試驗方法的比較 94
5.8.2.1 有機物種類與敏感性的關係 94
5.8.2.2 Surrogate 96
5.8.2.3 影響敏感性差異的因素 99

第六章 結論與建議 103
6.1 結論 103
6.2 建議 107

第七章 參考文獻 108

附錄一 二十種有機物毒性試驗原始數據 124

附錄二 九十一種有機物化學結構式 145





表 目 錄

表2.1 QSAR分析中的outliers毒性機制分類表 21
表3.1 Probit容忍度分佈公式 27
表4.1.1 Aromatics毒物列表 33
表4.1.2 Aliphatics毒物列表 34
表4.3.1 藻類營養基質巨量營養成份 36
表4.3.2 藻類營養基質微量營養成份 36
表5.1 二十種有機物毒性試驗結果 45
表5.2.1 硝基酚類的毒性與log P和pKa 49
表5.2.2 本研究中的脂肪族毒性與四種solute descriptors 50
表5.3.1 本研究與其他物種毒性試驗數據 51
表5.3.2 本研究與green algae和ciliate毒性試驗結果 53
表5.4.1 Polar narcosis有機物之毒性試驗結果與物化參數 55
表5.4.2 Non polar narcosis有機物之毒性試驗結果與物化參數 58
表5.4.3 Oxidative phosphorylation uncoupling有機物之
毒性試驗結果與物化參數 63
表5.4.4 Electrophilic/Proelectrophilic有機物之
毒性試驗結果與物化參數 64
表5.5.5 Respiratory inhibition有機物之毒性試驗結果與物化參數 66
表5.6.1 九十一種毒物的EC10、EC50、log Te、log ACR 73
表5.6.2 各類毒物之間的相對毒性排名 77
表5.7.1 各種毒性機制毒性與單一物化參數之間回歸關係 79
表5.7.2 各種毒性機制毒性同時與多物化參數之間回歸關係 81
表5.7.3.1 酚類毒性與解離常數和log P 84
表5.7.3.2 苯胺類毒性與蒸氣壓 85
表5.7.3.3 腈類毒性與Elumo和Ehomo 86
表5.7.3.4 氯酚類毒性與log P 87
表5.8.1 本研究與其他物種實驗數據 91
表5.8.2.1 有機物種類與最敏感物種數量統計 95
表5.8.2.2 closed bottle test與water flea
對苯胺類的試驗結果與log P 95
表5.8.2.3 本研究結果與其他物種對毒性機制的回歸關係 98
表5.8.2.4 氯乙烷delta log(1/EC50)與亨利常數 100
表5.8.2.5 closed bottle test與文獻中的毒性差異與蒸氣壓 101
表5.8.2.6 毒性機制對於closed bottle與文獻中的毒性差異 102


圖 目 錄

圖2.1 毒性機制分類圖 20
圖3.1 點型的毒性試驗劑量反應曲線 26
圖4.7 密閉式藻類毒性試驗流程暨裝置示意圖 42
圖5.1.1 二十種有機物毒性與log P的關係 47
圖5.1.2 氯烷類和氯烯類與log P的關係 47
圖5.2.1 硝基酚類毒性based on DO與log P的關係 49
圖5.2.2 硝基酚類毒性based on DO與pKa的關係 49
圖5.2.3 硝基酚類毒性based on growth rate與log P的關係 49
圖5.2.4 硝基酚類毒性based on growth rate與pKa的關係 49
圖5.3.1 本研究以DO為試驗終點與其他物種毒性試驗結果關係圖 52
圖5.3.2 本研究以growth rate為試驗終點與其他物種毒性試驗結果關係圖 52
圖5.3.3 本研究與green algae相關性比較圖 53
圖5.3.4 本研究與ciliate相關性比較圖 53
圖5.5.1 Non polar narcosis的log P與log(1/EC50)
on final yield關係圖 70
圖5.5.2 毒性作用機制與baseline toxicity關係圖 70
圖5.6.1 各類有機物的log Te和log ACR 76
圖5.7.3.1 酚類毒性與解離常數回歸關係圖 84
圖5.7.3.2 酚類毒性與pKa的關係 84
圖5.7.3.3 苯胺類毒性與蒸氣壓回歸關係圖 85
圖5.7.3.4 腈類毒性與Elumo和Ehomo回歸關係圖 86
圖5.7.3.5 七種氯酚類毒性與log P回歸關係圖 87
圖5.8.2.1 closed bottle test與其他物種的
毒性試驗結果關係圖 97
圖5.8.2.2 氯乙烷delta log(1/EC50)與亨利常數關係圖 100
Abernethy, S., Bobra, A.M., Shiu, W.Y., Wells, P.G., Mackay, D., 1986. Acute Lethal Toxicity of Hydrocarbons and Chlorinated Hydrocarbons to Two Planktonic Crustaceans: The Key Role of Organism-Water Partitioning. Aquat. Toxicol. 8, 163-174.

Adema, D.M.M., Canton, J.H., Slooff, W., Hanstveit, A.O., 1981. Research for a Useful Combination of Test Methods to Determine the Aquatic Toxicity of Environmentally Dangerous Chemicals. Rep.No.CL81/100, Natl.Inst.Public Health Environ.Hyg. 107.

Ahmed, A.E., Soliman, S., Loh, J.,Hussein, G.I., 1989. Studies on the mechanism of haloacetonitriles toxicity: Inhibition of rat hepatic glutathione S-transferases in-vitro. Toxicol. Appl. Pharmacol. 100, 271.

Akers, K.S., Sinks, G.D., Schultz, T.W., Structure-toxicity relationships for selected halogenated aliphatic chemicals., 1999. Enviro. Toxicol. Phar. 7, 33-39.

Alexander, H.C., McCarty, W.M., Bartlett, E.A., 1978. Toxicity of Perchloroethylene, Trichloroethylene, 1,1,1-Trichloroethane, and Methylene Chloride to Fathead Minnows. Bull. Environ Contam. Tox. 20, 344-352.

American Public Health Association (APHA), American Water Works Association and Water Pollution Control Federation, 1995. Toxicity testing with phytoplankton, in Standard Methods for Examination of Water and Wastewater, 19th edn, APHA, Washington, DC.

American Society for Testing and Materials(ASTM), 1994. Standard Guide for Conducting Static 96h Toxicity Tests with Microalgae. Annual Book of ASTM Standards. ASTM E1218-90. Philadelphia, PA.

Atkins, P.W., 1994. Physical chemistry. Oxiford University Press. 497.

Bailey, H.C., Spanggord, R.J., 1983. The Relationship between the Toxicity and Structure of Nitroaromatic Chemicals. In: W.E.Bishop, R.D.Cardwell, and B.B.Heidolph (Eds.), Aquatic Toxicology and Hazard Assessment, 6th Symposium, ASTM STP 802, Philadelphia, PA. 98-107.

Bentley, R.E., Heitmuller, T., Sleight III, B.H., Parrish, P.R., 1979. Acute Toxicity of Chloroform to Bluegill (Lepomis macrochirus), Rainbow Trout (Salmo gairdneri), and Pink Shrimp (Penaeus duorarum). U.S.EPA, Criteria Branch, WA-6-99-1414-B, Washington, D.C. 13.

Bearden, A.P., Schultz, T.W., 1997. Structure-activity relationships for Pimephales and Tetrahymena: a mechanism of action approach. Environ. Toxicol. Chem. 16, 1311-1317.

Bills, T.D., Marking, L.L., 1981. Polychlorinated Biphenyl (Aroclor 1254) Residues in Rainbow Trout: Effects on Sensitivity to Nine Fishery Chemicals. N.Am.J.Fish.Manage. 1, 200-203.

Blum, D.J.W., Speece, R.E., 1990. Determing chemical toxicity to aquatic species. Environ. Sci. Tec. 24, 3, 284-293.

Blum, D.J.W., Speece, R.E., 1991. A database of chemical toxicity to environmental bacteria and its use in interspecies comparisons and correlations. J. WPCF. 63, 198-207.

Brack, W., Rottlern, H., 1994. Toxicity testing of highly volatile chemicals with green algae. ESPR. 4, 23-228.

Bradbury, S.P., 1995. Quantitative-activity relationship and ecological risk assessment: an overview of predictive aquatic toxicology research. Toxicol. Lett. 79, 229-237.

Bringmami, G., Kuchn, R., 1980. Comparison of the Toxicity Thresholds of water pollutants to bacteria, Algae, and protozoa in the cell multiplication inhibition test. Water Res. 14, 231-241.

Broderius, S.J., Michael, D.K., Marilynn, D.H., 1995. Use of joint response to define the primary modes of toxic action for diverse industrial organic chemicals. Environ. Toxicol. Chem. 14, 1591-1605.

Broderius, S.J., Kahl, M.D., Hoglund, M.D., 1995. Use of Joint Toxic Response to Define the Primary Mode of Toxic Action for Diverse Industrial Organic Chemicals. Environ. Toxicol. Chem. 14, 1591-1605.

Brooke, L.T., 1987. Report of the Flow-Through and Static Acute Test Comparisons with Fathead Minnows and Acute Tests with an Amphipod and a Cladoceran. Center for Lake Superior Environ. Stud., Univ. of Wisconsin-Superior, Superior, WI. 24.

Brooke, L.T., 1991. Results of Freshwater Exposures with the Chemicals Atrazine, Biphenyl, Butachlor, Carbaryl, Carbazole, Dibenzofuran, 3,3'-Dichlorobenzidine, Dichlorvos 1,2-Epoxyethylbenzene (Styrene Oxide), Isophorone, Isopropalin, Oxyc. Center for Lake Superior Environmental Stud., Univ. of Wisconsin-Superior, Superior, WI. 110.

Brooke, L.T., Call, D.J., Geiger, D.L., Northcott, C.E., 1984. Acute Toxicities of Organic Chemicals to Fathead Minnows (Pimephales promelas), Vol. 1. Center for Lake Superior Environmental Stud., Univ. of Wisconsin-Superior, Superior, WI. 414.

Canton, J.H., Adema, D.M.M., 1978. Reproducibility of Short-Term and Reproduction Toxicity Experiments with Daphnia magna and Comparison of the Sensitivity of Daphnia magna with Daphnia pulex and Daphnia cucullata in Short-Term Experiments. Hydrobiologia. 59, 135-140.

Chen, C.Y., Chao, M.R., 2000. No-observed-effect concentrations in batch and continuous algal toxicity tests. Environ. Toxicol. Chem. 19, 1589-1596.

Chen, C.Y., Lin, K.C., 1997. Optimization and performance evaluation of the continuous algal toxicity test. Environ. Toxicol. Chem. 16, 1337-1344.

Cowgill, U.M., Milazzo, D.P., 1991. The Sensitivity of Ceriodaphnia dubia and Daphnia magna to Seven Chemicals Utilizing the Three-Brood Test. Arch. Environ. Contam. Toxicol. 20, 211-217.

Cronin, M.T.D., Dearden, J.C., 1995. Review: QSAR in toxicology, 1. Prediction of aquatic toxicity. Quant. Struct. Act. Relat. 14, 1-7.

Curtis, M.W., Ward, C.H., 1981. Aquatic Toxicity of Forty Industrial Chemicals: Testing in Support of Hazardous Substance Spill Prevention Regulation. J. Hydro. 51, 359-367.

Davies, J., Ward, R.S., Hodges, G., Roberts, D.W., 2004. Quantitative structure-activity relationship modeling of acute toxicity of quaternary alkylammonium sulfobetaines to Daphnia magna. Environm. Toxicol. Chem. 23, 2111-2115.

Dearden, J.C., Cronin, M.T.D., Schultz, T.M., 1995. QSAR study of the toxicity of nitrobenzenes of Tetrahymena pyrifirmis. Quant. Struct. Act. Relat. 14, 427-432.

Dearden, J.C., Cronin, M.T.D., Zhao, Y.H., 2000. QSAR studies of Compounds Acting by Polar and Nonpolar Narcosis: an Examination of the role of Polarisability and H ydrogen Bonding. Quant. Struct. Act. Relat. 19, 3-9.

Dill, D.C., Murphy, P.G., Mayes, M.A., 1987. Toxicity of Methylene Chloride to Life Stages of the Fathead Minnow, Pimephales promelas Rafinesque. Bull. Environ. Contam. Tox. 39, 869-876.

Di Marizo, W., and Saenz, M.E., 2004. Quantitative structure-activity relationship for aromatic hydrocarbons on freshwater fish. Ecotox. Environ. Safe. 59, 256-262.

Di Marizo, W.D., Galassi, S., Todeschini, R., Consolaro, S., 2001. Traditional versus whim molecular descriptors in QSAR approaches applied to fish toxicity studies. Chemosphere. 44, 401-406.

Dimitrov, S., Koleva, Y., Schultz, T.W., Walker, J.D., Mekenyan, O., 2004. Interspecies quantitative structure-activity relationship model for aldehydes: aquatic toxicity, Environ. Toxicol. Chem. 23, 2, 463-470.

Dodard, S.G., Renoux, A.Y., Hawari, J., Ampleman, G., Thiboutot, S., Sunahara, G.I., 1999. Ecotoxicity Characterization of Dinitrotoluenes and Some of Their Reduced Metabolites. Chemosphere. 38, 2071-2079.

Ensley, -H.E., Sharma, -H.A., Barber, J.T., Polito, -M.A., 1997. Metabolism of chlorinated phenols by Lemna gibba, duckweed. In Phytoremediation of Soil and Water Contaminants. American Chemical Society, Washington, DC. 238-253.

Calamari, D., Galassi, S., Setti, F.,Vighi, M., 1983. Toxicity of selected chlorobenzenes to aquatic organisms. Chemosphere. 12, 253-262.

Galassi, S., Vighi, M., 1981. Testing toxicity of volatile substances with algae. Chemosphere. 10, 1123-1126.

Feng, L., Han, S., Zhao, Y., Wang, L., Chen, J., 1996. Toxicity of organic chemicals to fathead minnow: a united quantitative structure-activity relationship model and its application. Chem. Res. Toxicol. 9, 610-613.

Fogels, A., Sprague, J.B., 1977. Comparative Short-Term Tolerance of Zebrafish, Flagfish, and Rainbow Trout to Five Poisons Including Potential Reference Toxicants. Water Res. 11, 811-817.

Galassi, S., Mingazzini, M., Vigano, L., Cesareo, D., Tosato, M.L., 1988. Approaches to Modeling Toxic Responses of Aquatic Organisms to Aromatic Hydrocarbons. Ecotox. Environ. Safe. 16, 158-169.

Call, D.J., Brooke, L.T., Ahmad, N., 1979. Toxicity, Bioconcentration and Metabolism of Selected Chemicals in Aquatic Organisms. Third Quarterly Progress Report to EPA, EPA Cooperative Agreement No. CR 806864020, University of Wisconsin, Superior, W I. 38.

Call, D.J., Brooke, L.T., Ahmad, N., Richter, J.E., 1983. Toxicity and Metabolism Studies with EPA Priority Pollutants and Related Chemicals in Freshwater Organisms. EPA 600/3-83-095, U.S.EPA, Duluth, MN. 120.

Carlson, A.R., Kosian, P.A., 1987. Toxicity of Chlorinated Benzenes to Fathead Minnows (Pimephales promelas). Arch. Environ. Contam. Toxicol. 16, 129-135.

Castano, A., Cantarino, M.J., Castillo, P., Tarazona, J.V., 1996. Correlations Between the RTG-2 Cytotoxicity Test EC50 and In Vivo LC50 Rainbow Trout Bioassay. Chemosphere. 32, 2141-2157.
Crossland, N.O., Wolff, C.J.M., 1985. Fate and Biological Effects of Pentachlorophenol in Outdoor Ponds. Environ.Toxicol. Chem. 4, 73-86.

Curtis, M.W., Copeland, T.L., Ward, C.H., 1979. Acute Toxicity of 12 Industrial Chemicals to Freshwater and Saltwater Organisms. Water Res. 13, 137-141.

Douglas, M.T., Chanter, D.O., Pell, I.B., Burney, G.M., 1986. A Proposal for the Reduction of Animal Numbers Required for the Acute Toxicityto Fish Test (LC50 Determination). Aquat. Toxicol. 8, 243-249.

Galassi, S., Mingazzini, M., Vigano, L., Cesareo, D., Tosato, M.L., 1988. Approaches to Modeling Toxic Responses of Aquatic Organisms to Aromatic Hydrocarbons. Ecotoxicol. Environ Safe. 16, 158-169.

Geiger, D.L., Poirier, S.H., Brooke, L.T., Call, D.J., 1986. Acute Toxicities of Organic Chemicals to Fathead Minnows (Pimephales promelas), Vol. 3. Center for Lake Superior Environmental Stud., Univ. of Wisconsin-Superior, Superior, WI I. 328.

Geiger, D.L., Brooke, L.T., Call, D.J., 1990. Acute Toxicities of Organic Chemicals to Fathead Minnows (Pimephales promelas), Vol. 5. Center for Lake Superior Environmental Stud., Univ. of Wisconsin-Superior, Superior, WI I. 332.

Guilhermino, L., Lopes, M.C., Carvalho, A.P., Soares, A.M.V.M., 1996. Inhibition of Acetylcholinesterase Activity as Effect Criterion in Acute Tests with Juvenile Daphnia magna. Chemosphere. 32, 727-738.

Guilhermino, L., Diamantino, T., Silva, M.C., Soares, A.M.V.M., 2000. Acute Toxicity Test with Daphnia magna: An Alternative to Mammals in the Prescreening of Chemical Toxicity?. Ecotoxicol. Environ. Safe. 46, 357-362.

Gunatilleka, A.D., Poole, C.F., 1999. Models for estimating the non-specific aquatic toxicity of organic compounds. Anyl. Commun. 36, 235-242

Hansch, C., Muir, R., Fujita, T., Peyton, P., Maloney, P., Geiger, F., Streich, M., 1963. The correlation of biological activity of plant growth regulators and chloromycetin derivates with Hammett constants and partition coefficients. Journal of American Chemistry Society. 85, 2817-2824.

Heath, A.G., 1995. Water pollution and fish physiology. Lewis Publish Boca Raton. 359.

Henderson, C., Pickering, Q.H., Lemke, A.E., 1961. The Effect of Some Organic Cyanides (Nitriles) on Fish. Proc.15th Ind.Waste Conf., Eng. Bull. Purdue Univ. 106, 65(2), 120-130.

Herman D. C. ,Inniss W. E. and Mayfield C. I. 1990. Impact of volatile aromatic hydrocarbons, alone ane in combination, on growth of the freshwater alga Selenastrum Capricornutum. Aquat. Toxicol. 18, 87-100.

Hedtke, S.F., West, C.W., Allen, K.N., Norberg-King, T.J., Mount, D.I., 1986. Toxicity of Pentachlorophenol to Aquatic Organisms Under Naturally Varying andControlled Environmental Conditions. Environ. Toxicol. Chem. 5, 531-542.

Hermens, J.L.M., Bradbury, S.P., Broderius, S.J., 1990. Influence of Cytochrome P450 Mixed-Function Oxidase Induction on the Acute Toxicity to Rainbow Trout (Salmo gairdneri) of Primary Aromatic Amines. Ecotox. Environ. Safe. 20, 156-166.

Hodson, P.V., 1985. A Comparison of the Acute Toxicity of Chemicals to Fish, Rats and Mice. J. Appl. Toxicol. 5, 220-226.

Hodson, P.V., Dixon, D.G., Kaiser, K.L.E., 1984. Measurement of Median Lethal Dose As a Rapid Indication of Contaminant Toxicity to Fish. Environ. Toxicol. Chem. 3, 243-254.

Holcombe, G., Phipps, G., 1987. Memorandum to N.Thomas, C. Stephan, B. Spehar and S. Broderius, U.S. EPA. March 2, 1987. 2,4-Dimethylphenol and Methyl Parathion Multiple Species Acute Test Results for Criteria Document Development. Memo to N.Thomas, C.Stephan, B.Spehar, and S.Broderius, U.S.EPA, Duluth, MN.

Holcombe, G.W., Phipps, G.L., Sulaiman, A.H., Hoffman, A.D., 1987. Simultaneous Multiple Species Testing: Acute Toxicity of 13 Chemicals to 12 Diverse Freshwater Amphibian, Fish, and Invertebrate Families. Arch. Environ. Contam. Toxicol. 16, 697-710.

Hostetter, H.P., 1976. A rapid bioassay for algal nutrients and toxins. J. Phycol. 12, 10.

Holcombe, G., and Phipps G., 1987. Memorandum to N.Thomas, C. Stephan, B. Spehar and S. Broderius, U.S. EPA. March 2, 1987. 2,4-Dimethylphenol and Methyl Parathion Multiple Species Acute Test Results for Criteria Document Development. Memo to N.Thomas, C.Stephan, B.Spehar, and S.Broderius, U.S.EPA, Duluth, MN.

Holcombe, G.W., Phipps, G.L., Sulaiman, A.H., Hoffman, A.D., 1987. Simultaneous Multiple Species Testing: Acute Toxicity of 13 Chemicals to 12 Diverse Freshwater Amphibian, Fish, and Invertebrate Families. Arch. Environ. Contam. Toxicol. 16, 697-710.

Howe, G.E., Marking, L.L., Bills, T.D., Rach, J.J., Mayer Jr., F.L., 1994. Effects of Water Temperature and pH on Toxicity of Terbufos, Trichlorfon, 4-Nitrophenol and 2,4-Dinitrophenol to the Amphipod Gammarus pseudolimnaeus and Rainbow Trout (Oncorhynchus mykiss). Environ. Toxicol. Chem. 13, 51-66.

Hsieh, S.H., 2004. A closed-system algal test for evaluating the mixture toxicity of industrial non-polar narcosis chemicals. A Thesis of Institute of Environmental Engineering of National Chiao Tung University.

Hsu, C.H., 2002. Toxicity assessment of non-polar narcotic chemicals using a close-system algal test. A Thesis of Institute of Environmental Engineering of National Chiai Tung University.

Huang, H.J., 2000. Experimental design of the algal toxicity test based on photosynthesic response. A Thesis of Institute of Environmental Engineering of National Chiao Tung University.

International Organization for Standardization (ISO), 1987. Water quality- Algal growth inhibition test. Draft International Standard ISO/DIS 8692. Geneva, Switzerland.
Janssen, C.R., Persoone, G., 1993. Rapid Toxicity Screening Tests for Aquatic Biota. 1. Methodology and Experiments with Daphnia magna. Environ. Toxicol. Chem. 12, 711-717.

Kamlet, M.J., Doherty, R.M., Veith, G.D., Taft, R.W., Abraham, M.H., 1986. Solubility properties in polymers and biological media, 7. An analysis of toxicant properties that influence inhibition of bioluminescence in Photobacterium phosphoreum (the Microtox Test). Environ. Sci. Tech. 20, 690-695.

Kaiser, K.L.E., Esterby, S.R., 1991. Regression and cluster analysis of the zcute toxicity of 267 chemicals to six species of biota and the octanol/water partition coefficient. Sci. Total. Environ. 109, 110, 499-514.

Kao, W.C., 2001. A comparison of the results of several freshwater aquatic toxicity testing on synthetic and real wastewaters. A Thesis of Institute of Environmental Engineering of National Chiao Tung University.

Kennedy, C.J., 1990. Toxicokinetic Studies of Chlorinated Phenols and Polycyclic Aromatic Hydrocarbons in Rainbow Trout (Oncorhynchus mykiss). Ph.D.Thesis, Simon Fraser University, Canada:188 p.; Diss.Abstr.Int.B Sci.Eng.53(1):18 (1992)

Keen, R., Baillod, C.R., 1985. Toxicity to Daphnia of the End Products of Wet Oxidation of Phenol and Substituted Phenols. Water Res. 19, 767-772.

Kuhn, R., Pattard, M., 1990. Results of the harmful effects of water pollutants to green algae ( Scenedesmus subspicatus ) in the cell multiplication inhibition test. Watet Res. 24, 31-38.

Kuhn, R., Pattard, M., Pernak, K., Winter, A., 1989. Results of the Harmful Effects of Selected Water Pollutants (Anilines, Phenols, Aliphatic Compounds) to Daphnia magna. Water Res. 23, 495-499.

Knie, J., Halke, A., Juhnke, I., Schiller, W., 1983. Results of Studies on Chemical Substances with Four Biotests. (Ergebnisse Der Untersuch-Ungen Von Chemischen Stoffen Mit Vier Biotests). Dtsch.Gewaesserkd.Mitt. 27, 77-79.
LeBlanc, G.A., 1980. Acute Toxicity of Priority Pollutants to Water Flea (Daphnia magna). Bull. Environ. Contam. Toxicol. 24, 684-691.

Lin, J.H., 2001. Experimental design of the algal toxicity test based on BOD bottle. A Thesis of Institute of Environmental Engineering of National Chiao Tung University.

Lin, J.H., Kao, W.C., Tsai, K.P., Chen, C.Y., 2005. A novel algal toxicity testing technique for assessing the toxicity of both metallic and organic toxicants. Water Res. 39, 1869-1877.

Lipick, R.L., 1991. Outliers: their origin and use in the classification of molecular mechanisms of toxicity. Sci. Total. Environ. 109, 110, 131-153.

Lipnick, R.L., Watson, K.R., Strausz, K.A., 1987. A QSAR study of the acute toxicity of some industrial organic chemicals to gold fish, Narcosis, electrophile, and proelectrophilic mechanism. Xenobiotica. 17, 1011-1025.

Lu, G.H., Yuan, X., Zhao Y.H., 2001. QSAR study on the toxicity of substituted benzenes to the algae. Chemosphere. 44, 437-440.

Maas-Diepeveen, J.L., Van Leeuwen, C.J., 1986. Aquatic Toxicity of Aromatic Nitro Compounds and Anilines to Several Freshwater Species. Laboratory for Ecotoxicology, Institute for Inland Water Management and Waste Water Treatment, Report. 86-42.

Marchini, S., Tosato, M.L., Norberg-King, T.J., Hammermeister, D.E., Hoglund, M.D., 1992. Lethal and Sublethal Toxicity of Benzene Derivatives to the Fathead Minnow, Using a Short-Term Test. Environ. Toxicol. Chem. 11, 187-195.

Masten, L.W., Boeri, R.L., Walker, J.D., 1994. Stategies Employed to Determine the Acute Aquatic Toxicity of Ethyl Benzene, a Highly Volatile, Poorly Water-Soluble Chemical. Ecotox. Environ. Safe. 27, 335-348.

Mayer, M., Nyholm N., Verbruggen E.M.J., Hermens, J.M.L., Tolls, J., 2000. Algal growth inhibition test in filled, closed bottles for volatile and sorptive materials. Environ. Toxicol. Chem. 19, 2551-2556.
Mayer, F.L.J., Ellersieck, M.R., 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. Resour.Publ.No.160, U.S.Dep.Interior, Fish Wildl.Serv., Washington, DC, 505.

Mayer, P., Frickmann, J., Christensen, E.R., Nyholm, N., 1998. Influence of Growth Conditions on the Results Obtained in Algal Toxicity Tests. Environ. Toxicol. Chem. 17, 1091-1098.

Mayes, M.A., Alexander, H.C., Dill, D.C., 1983. A Study to Assess the Influence of Age on the Response of Fathead Minnows in Static Acute Toxicity Tests. Bull. Environ. Contam. Toxicol. 31, 139-147.

McFarland, J.W., 1970. On the parabolic relationship between drug potency and hydrophobicity. J. Med. Chem. 13, 1092-1196.

McKarns, S.C., Hansch, C., Caldwell, W.S., Morgan, W.T., Moore, S.K., Doolittle, D.J., 1997. Correlation between hydrophobicity of short-chain aliphatic alcohols and their ability to alter plasma membrane integrity. Fund. Appl. Toxicol. 36, 62-70.

Mckim, J.M., Bradbury, S.P., Niemi, G.J., 1987. Fish acute toxicity syndromes and their use in the QSAR approach to hazard assessment. Environ. Health prespect. 71, 171-186.

McKim, J.M., Schmieder, P.K., Carlson, R.W., Hunt, E.P., Niemi, G.J., 1987. Use of Respiratory-Cardiovascular Responses of Rainbow Trout (Salmo gairdneri) in Identifying Acute Toxicity Syndromes in Fish: Part 1. Pentachlorop. Environ. Toxicol. Chem. 6, 295-312.

Mekenyan, O.G., Veith, G.D., 1994. The electronic factor in QSAR: MO-parameters, competing interactions, reactivity, and toxicity. SAR QSAR Environ. Res. 2, 129-143.

Mekapati, S.B., Hansch, C., 2002. On the parametrization of toxicity of organic chemicals to Tetrahymena pyriformis. The problem of establishing a uniform activity. J. Chem. Inf. Comput. Sci. 42, 956-961.

Mingazzini, M., Saenz, M.E., Albergoni, F.G., Marre, M.T., 1997. Algal photosynthesis measurements in toxicity testing. Fresenius Envir Bull. 6, 308-313.

Nirmalakhandan, N., Egemen, E., Trevizo, C., Xu, S., 1998. Structure-and property-activity relationship models for prediction of microbal toxicity of organic chemicals to activated sludge. Ecotox. Environ. Safe. 39, 112-119.

Nyholm, N., Damgaard, B.M., 1990. A comparison of the algal growth inhibition toxicity test method with the short term 14C-assimilation test. Chemosphere. 21, 671-679.

Nyholm, N., Källqvist, T., 1989. Methods for growth inhibition toxicity tests with freshwater algae. Environ. Toxicol. Chem. 8, 689-703.

Office of Pesticide Programs. 2000. Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB)). Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.

Organization for Economic Cooperation and Development (OECD), 1984. Guideline for testing chemicals. No. 201. Alga growth inhibition test. Paris, France.

Organization for Economic Cooperation and Development (OECD), 1995. Guidance Document for Aquatic Effects Assessment, NO. 92 OECD, Paris.

Padrtova, R.R., Marsalek, B., Holoubek, I., 1998. Evaluation of alternative and standard toxicity assays for screening of environmental samples: selection of an optimal test battery. Chemosphere. 37, 495-507.

Phipps, G.L., Holcombe, G.W., Fiandt, J.T., 1981. Acute Toxicity of Phenol and Substituted Phenols to the Fathead Minnow. Bull. Environ. Contam. Toxicol. 26, 585-593.

Poirier, S.H., Knuth, M.L., Anderson-Buchou, C.D., Brooke, L.T., Lima, A.R., Shubat, P.J., 1986. Comparative Toxicity of Methanol and N,N-Dimethylformamide to Freshwater Fish and Invertebrates. Bull. Environ. Contam. Toxicol. 37, 615-621.

Ramos, E.U., Vaal, M.A., Hermens, J.L.M., 2002. Interspecies sensitivity in the aquatic toxicity of aromatic amines. Environ. Toxicol. Pharm. 11, 149-158.

Ramos, E.U., Vermeer, C., Vaes, W.H.J., Hermens, J.L.M., 1998. Acute Toxicity of Polar Narcotics to Three Aquatic Species (Daphnia magna, Poecilia reticulata and Lymnaea stagnalis) and Its Relation to Hydrophobicity. Chemosphere. 37, 633-650.

Randall, T.L., Knopp, P.V., 1980. Detoxification of Specific Organic Substances by Wet Oxidation. J. Water Pollut. Control Fed. 52, 2117-2130.

Randic, M., 1975. On the characterization of molecular branching. J. Am. Chem. Soc. 97, 6609-6615.

Ren, S., 2002. Predicting three narcosis mechanisms of aquatic toxicity. Toxicol. Lett. 133, 127-139.

Ribo, J.M., Kaiser, K.L.E., 1984. Toxicities of chloroanilines to Photobacterium and their correlations with effects on their organisms and structural parameters. QSAR in environmental toxicology. 319-336.

Robert, D.W., 1987. In:Kaiser, K.L.E. (Ed.), QSAR in Environmental Toxicology – II. Reidel, Dordrecht, 295-308.

Roberts, R.O., Berk, S.G., 1990. Development of a Protozoan Chemoattraction Bioassay for Evaluating Toxicity of Aquatic Pollutants. Toxic Assess. 5, 279-292

Rogerson, A., Shiu, W.Y., Huang, G.L., Mackay, D., Berger, J.,1983. Determination and Interpretation of Hydrocarbon Toxicity to Ciliate Protozoa. Aquat. Toxicol. 3, 215-228.

Russom, C.L., Bradbury, S.P., Broderius, S.J., Hammermeister, D.E., Drummond, R A., 1997. Predicting modes of toxic action from chemical structure : acute toxicity in the fathead minnow (Pimephales promelas).Environ. Toxicol. Chem. 16, 5, 948-967.

Schultz, T.W., 1987. The use of the ionization constant (pKa) of toxicity of phenols. Ecotox. Environ. Saf. 14, 178-183.

Schultz, T.W., Bearden, A.P., Jaworska, J.S., 1996. A novel QSAR approach for estimating toxicity of phenols. SAR QSAR Environ. Res. 5, 99-112.

Schultz, T.W., Sinks, G.D., Bearden, A.P., 1998. QSAR in aquatic toxicology:A mechanism of action approach comparing toxic potency to Pimephales promelas, Tetrahymena pyriformis, and Vibrio fischeri. In:Devillers J, editor. Comparative QSAR. New York:Taylor & Francis. 51-109.

Shigeoka, T., Sato, Y., Takeda, Y., 1988. Acute toxicity of chlorophenols to green algae Selenastrum capricornutum and Chlorella vulgaris, and quantitative structure-activity relationships. Environ. Toxicol. Chem. 7, 847-854.

Shubat, P.J., Poirier, S.H., Knuth, M.L., Brooke, L.T., 1982. Acute Toxicity of Tetrachloroethylene and Tetrachloroethylene with Dimethylformamide to Rainbow Trout (Salmo gairdneri). Bull. Environ. Contam. Toxicol. 28, 7-10.

Sixt, S., Altschuh, J., Bruggemann, R., 1995. Quantitative structure-toxicity relationship for 80 chlorinated compounds using quantum chemical prescriptors. Chemosphere. 30, 2397-2414.

Sorvari, J., Sillanpää, M., 1996. Influence of metal complex formation on heavy metal and free EDTA and DTPA acute toxicity determined by Daphnia magna. Chemosphere. 33, 1119-1127.

Takahashi, I.T., Cowgill, U.M., Murphy, P.G., 1987. Comparison of Ethanol Toxicity to Daphnia magna and Ceriodaphnia dubia Tested at Two Different Temperatures: Static Acute Toxicity Test Results. Bull. Environ. Contam. Toxicol. 39, 229-236.

Tao, S., X., Xiaohuan X., Fuliu, Richard, D., 2002. A QSAR model for predicting toxicity (LC50) to Rainbow trout. Water Res. 36, 2926-2930.

Thellen, C., Blaise, C., Roy, Y., Hickey, C., 1989. Round Robin Testing with the Selenastrum capricornutum Microplate Toxicity Assay. Hydrobiologia. 188/189, 259-268.
Thurston, R.V., Gilfoil, T.A., Meyn, E.L., Zajdel, R.K., Aoki, T.L., Veith, G.D., 1985. Comparative Toxicity of Ten Organic Chemicals to Ten Common Aquatic Species. Water Res. 19, 1145-1155.

Tichy, M., Schultz, T.W., 1995. Excess toxicity of unsaturated aldehydes-Log P-dependent QSAR model. In: Sanz, F., Giraldo, J., Manaut, F. (Eds.), QSAR and Molecular Modeling: Concepts, Computational Tools and Biological Applications. Prous Science, Barcelona, Spain. 125.

Tong, Z., Huailan, Z., Hongjun, J., 1996. Chronic Toxicity of Acrylonitrile and Acetonitrile to Daphnia magna in 14-d and 21-d Toxicity Tests. Bull. Environ. Contam. Toxicol. 57, 655-659.

Trevizo, C., and Nirmalakhandan, N., 1999. Prediction of microbial toxicity of industrial organic chemicals. Water Sci. Tech. 39, 10-11, 63-69.

Turbak, S.C., Olson, S.B., McFeters, G.A., 1986. Comparison of algal assay systems for detecting waterborne herbicides and metals. Water Res. 20, 91-96.

Thurston, R.V., Gilfoil, T.A., Meyn, E.L., Zajdel, R.K., Aoki, T.L., Veith, G.D., 1985. Comparative Toxicity of Ten Organic Chemicals to Ten Common Aquatic Species. Water Res. 19, 1145-1155.

United States Environmental Protection Agency (U.S. EPA), 1996. Ecological Effect Test Guidelines. OPPTS 850.5400. Algal Toxicity, Tiers I and II.

U.S. Environmental Protection Agency, 1978. In-Depth Studies on Health and Environmental Impacts of Selected Water Pollutants. Contract No.68-01-4646, U.S.EPA. 9.

Van Leeuwen, C.J., Griffioen, P.S., Vergouw, W.H.A., Maas-Diepeveen, J.L., 1985. Differences in Susceptibility of Early Life Stages of Rainbow Trout (Salmo gairdneri) to Environmental Pollutants. Aquat Toxicol. 7, 59-78.

Veith, G.D., Broderius, S.J., 1990. Rules for distinguishing toxicants that cause typeI and type II narcosis syndrome. Environ. Health Persp. 87, 207-211.

Verhaar, H.J.M., Van Leeuwen,, C.J., Hermens, J.L.M., 1992. Classfying environmental pollutants: 1-structure-activity relationships for prediction of aquatic toxicity. Chemisphere. 25, 471-491.

Walbridge, C.T., Fiandt, J.T., Phipps, G.L., Holcombe, G.W., 1983. Acute Toxicity of Ten Chlorinated Aliphatic Hydrocarbons to the Fathead Minnow (Pimephales promelas). Arch. Environ. Contam. Toxicol. 12, 661-666.

Walker, J.D., 1990. Effect of chemicals on microorganisms. Research Journal WPCF. 62, 618-624.

Yen, J.H., Lin, K.H., Wang, Y.S., 2002. Acute Lethal Toxicity of Environmental Pollutants to Aquatic Organisms. Ecotox. Environ. Safe. 52, 113-116.

Yoshioka, Y., Ose, Y., Sato, T., 1985. Testing for the Toxicity of Chemicals with Tetrahymena pyriformis. Sci. Total Environ. 42, 149-157.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊