|
[1] B. Julesz, E. N. Gilbert, L. A. Shepp, and H. L. Frisch, “Inability of humans to discriminate between visual textures that agree in 2nd-order statistics--revisited,” Perception, vol. 2, pp. 391-405, 1973. [2] D. Marr, Vision. San Francisco, CA: W. H. Freeman, 1982. [3] W. Richards, “Quantifying sensory channels: Generalizing colorimetry to orientation and texture, touch, and tones,” Sensory Processes, vol. 3, pp. 207-229, 1979. [4] J. K. Hawkins, “Textural properties for pattern recognition,” in Picture Processing and Psychopictorics, B. Lipkin and A. Rosenfeld Eds., Academic Press, New York, 1969. [5] H. Tamura, S. Mori, and Y. Yamawaki, “Texture features corresponding to visual perception,” IEEE Transactions on System, Man, and Cybernetics, vol. 8, pp. 460-473, 1978. [6] J. Sklansky, “Image segmentation and feature extraction,” IEEE Transactions on System, Man, and Cybernetics, vol. 8, pp. 237-247, 1978. [7] B. Julesz, “Visual pattern discrimination,” IRE Transactions on Information Theory, IT-8, pp. 84-92, 1962. [8] J. Beck, “Perceptual grouping produced by changes in orientation and shape,” Science, vol. 154, pp. 538-540, 1966. [9] B. Julesz, “Experiments on the visual perception of texture,” Scientific American, vol. 232, pp. 34-43, 1975. [10] B. Julesz, “Visual texture discrimination using random-dot patterns: Comment,” Journal of the Optical Society of America, vol. 69, pp. 268-270, 1978. [11] B. Julesz, “Textons, the elements of texture perception and their interactions,” Nature, vol. 290, pp. 91-97, 1981. [12] J. Beck, “Texture segmentation,” in Organization and Representation in Perception, J. Beck Ed., Hillside, NJ: Erlbaum, 1982. [13] J. Beck, A. Sutter, and R. Ivry, “Spatial frequency channels and perceptual grouping in texture perception,” Computer Vision Graphics Image Processing, vol. 37, pp. 299-325, 1987. [14] D. Gabor, “Theory of communication,” Journal of the Institution of Electrical Engineers, vol. 93, pp. 429-457, 1946. [15] D. Marr and E. Hildreth, “Theory of edge detection,” Proceedings of the Royal Society of London (B), pp. 187-217, 1980. [16] J. D. Daugman, “Two dimensional spectral analysis of cortical receptive field profiles,” Vision Research, vol. 20, pp. 847-856, 1980. [17] J. D. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,” Journal of the Optical Society of America A, vol. 2, pp. 1160-1169, 1985. [18] J. R. Bergen and E. H. Adelson, “Early vision and texture perception,” Nature, vol. 333, pp. 363-364, 1988. [19] A. C. Bovik, M. Clark, and W. S. Geisler, “Multichannel texture analysis using localized spatial filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp. 55-73, 1990. [20] J. R. Bergen, “Theories of visual texture perception,” in Vision and Visual Dysfunction, vol. 10B, D. Regan, Ed., New York: MacMillan, 1991. [21] N. Graham, “Complex channels, early local nonlinearities, and normalization in texture segregation,” in Computational Models of Visual Processing, M. S. Landy and J. A. Movshon, Eds., Cambridge, MA: MIT Press, 1991. [22] M. R. Turner, “Texture discrimination by Gabor functions,” Biological Cybernetics, vol. 55, pp. 71-82, 1986. [23] J. Malik and P. Perona, “Preattentive texture discrimination with early vision mechanisms,” Journal of the Optical Society of America A, vol. 7, pp. 923-932, 1990. [24] A. K. Jain and F. Farrokhnia, “Unsupervised texture segmentation using Gabor filters,” Pattern Recognition, vol. 24, pp. 1167-1186, 1991. [25] B. S. Manjunath and R. Chellapa, “A unified approach to boundary perception: Edges, texture, and illusory contours,” IEEE Transactions on Neural Networks, vol. 4, pp. 96-108, 1993. [26] B. S. Manjunath and W. Y. Ma, “Texture features for browsing and retrieval of data,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 837-842, 1996. [27] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674-693, 1989. [28] M. Unser and M. Eden, “Multiresolution feature extraction and selection for texture segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 717-728, 1989. [29] H. W. Tang, V. Srinivasan, and S. H. Ong, “Texture segmentation via nonlinear interactions among Gabor feature pairs,” Optical Engineering, vol. 34, pp. 125-134, 1995. [30] T. N. Tan, “Texture edge detection by modeling visual cortical channels,” Pattern Recognition, vol. 28, pp. 1283-1298, 1995. [31] D. Dunn and W. E. Higgins, “Optimal Gabor filters for texture segmentation,” IEEE Transactions on Image Processing, vol. 4, pp. 947-964, 1995. [32] T. Weldon and W. E. Higgins, “Designing multiple Gabor filters for multitexture image segmentation,” Optical Engineering, vol. 38, pp. 1478-1489, 1999. [33] A. Teuner, O. Pichler, and B. J. Hosticka, “Unsupervised texture segmentation of images using tuned matched Gabor filters,” IEEE Transactions on Image Processing, vol. 4, pp. 863-870, 1995. [34] O. Pichler, A. Teuner, and B. J. Hosticka, “An unsupervised texture segmentation algorithm with feature space reduction and knowledge feedback,” IEEE Transactions on Image Processing, vol. 7, pp. 53-61, 1998. [35] J. G. Daugman, “Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, pp. 1169-1179, 1988. [36] M. Porat and Y. Y. Zeevi, “The generalized Gabor scheme of image representation in biological and machine vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, pp. 452-468, 1988. [37] W. McIlhagga, T. Hine, G. R. Cole, and A. W. Snyder, “Texture segregation with luminance and chromatic contrast,” Vision Research, vol. 30, pp. 489-495, 1990. [38] T. V. Papathomas, R. S. Kashi, and A. Gorea, “A human vision based computational model for chromatic texture segregation,” IEEE Transactions on System, Man, and Cybernetics-Part B: Cybernetics, vol. 27, pp. 428-440, 1997. [39] A. Jain and G. Healey, “A multiscale representation including opponent color features for texture recognition,” IEEE Transactions on Image Processing, vol. 7, pp. 124-128, 1998. [40] M. Mirmehdi and M. Petrou, “Segmentation of color textures,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 142-159, 2000. [41] J. F. Camapum Wanderley and M. H. Fisher, “Multiscale color invariants based on the human visual system,” IEEE Transactions on Image Processing, vol. 10, pp. 1630-1638, 2001. [42] L. G. Thorell, R. L. De Valois, and D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Research, vol. 24, pp. 751-769, 1984. [43] A. Bradley, E. Switkes, and K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to colour and luminance gratings,” Vision Research, 28, pp. 841-856, 1988. [44] M. A. Webster, K. K. De Valois, and E. Switkes, “Orientation and spatial-frequency discrimination for luminance and chromatic gratings,” Journal of the Optical Society of America A, vol. 7, pp. 1034-1049, 1990. [45] E. Hering, Outlines of a theory of the light sense. Translated by L. M. Hurvish and D. Jameson. Cambridge, MA: Harvard University Press. [46] S. A. Chen, “CNN-based texture boundary detection technique and its analog circuit implementation,” Master Thesis, National Chiao-Tung University, 2004. [47] R. L. De Valois and K. K. De Valois, Spatial Vision. New York: Oxford University Press, 1988. [48] D. H. Hubel, Eye, Brain, and Vision. Scientific American Library. New York: W. H. Freeman, 1988. [49] S. W. Kuffler, “Discharge patterns and functional organization of mammalian retina,” Journal of Neurophysiology, vol. 16, pp. 37-68, 1953. [50] H. B. Barlow, “Summation and inhibition in the frog’s retina,” Journal of Physiology, vol. 119, pp. 69-88, 1953. [51] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” Journal of Physiology, vol. 148, pp. 574-591, 1959. [52] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture of the visual cortex,” Journal of Physiology, vol. 160, pp. 106-154, 1962. [53] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” Journal of Physiology, vol. 195, pp. 215-243, 1968. [54] F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” Journal of Physiology, vol. 197, pp. 551-516, 1968. [55] K. K. De Valois, R. L. De Valois, and E. W. Yund, “Responses of striate cortex cells to grating and checkerboard patterns,” Journal of Physiology, vol. 291, pp. 483-505, 1979. [56] A. Bradley, E. Switkes, and K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to colour and luminance gratings,” Vision Research, 28, pp. 841-856, 1988. [57] J. P. Jones and L. A. Palmer, “The two-dimensional spatial structure of simple receptive fields in cat striate cortex,” Journal of Neurophysiology, vol. 58, pp. 1186-1211, 1987. [58] R. L. De Valois, I. Abramov, and G. H. Jacobs, “Analysis of response patterns of LGN cells,” Journal of the Optical Society of America, vol. 56, pp. 966-977, 1966. [59] M. S. Livingstone and D. H. Hubel, “Segregation of form, color, movement and depth: Anatomy, physiology and perception,” Science, vol. 240, pp. 740-749, 1988. [60] A. Treisman and G. Gelade, “A feature integration theory of attention,” Cognitive Psychology, vol. 12, pp. 97-136, 1980. [61] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Ed., Prentice Hall, 2002. [62] J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, pp. 679-698, 1986. [63] I. Fogel and D. Sagi, “Gabor filters as texture discriminator,” Biological Cybernetics, vol. 61, pp. 103-113, 1989. [64] S. Marcelja, “Mathematical description of the responses of simple cortical cells,” Journal of the Optical Society of America, vol. 70, pp. 1297-1300, 1980. [65] D. A. Pollen and S. F. Ronner, “Phase relationships between adjacent simple cells in the visual cortex,” Science, vol. 212, pp. 1409-1411, 1981. [66] J. J. Kulikowski, S. Marcelja, and P. O. Bishop, “Theory of spatial position and spatial frequency relations in the receptive field of simple cells in the visual cortex,” Biological Cybernetics, vol. 43, pp. 187-198, 1982. [67] B. Sakitt and H. B. Barlow, “A model for the economical encoding of the visual image in cerebral cortex,” Biological Cybernetics, vol. 43, pp. 97-108, 1982. [68] D. A. Pollen and S. F. Ronner, “Visual cortical neurons as localized spatial frequency filter,” IEEE Transactions on System, Man, and Cybernetics, vol. 13, pp. 907-916, 1983. [69] S. G. Mallat, “Wavelets for a vision,” Proceedings of the IEEE, vol. 84, pp. 604-614, 1996. [70] P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Transactions on Communications, vol. 31, pp. 532-540, 1983. [71] CIE, Uniform Color Space—Color Difference Equations—Psychometric Color Terms. Commission Internationale de l'Eclairage, Publication No. 15, Supplement No. 2, Paris, 1978. [72] E. Switkes, A. Bradley, and K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” Journal of the Optical Society of America A, vol. 5, pp. 1149-1162, 1989. [73] M. Bach, C. Schmitt, T. Quenzer, T. Meigen, and M. Fahle, “Summation of texture segregation across orientation and spatial frequency: Electrophysiological and psychophysical findings,” Vision Research, vol. 40, pp. 3559-3566, 2000. [74] E. N. Johnson, M. J. Hawken, and R. Shapley, “The spatial transform of color in the primary visual cortex of the macaque monkey,” Nature Neuroscience, vol. 4, pp. 409-416, 2001. [75] D. Schluppeck and S. A. Engel, “Color opponent neurons in V1: A review and model reconciling results from imaging and single-uint recording,” Journal of Vision, vol. 2, pp. 480-492, 2002. [76] R. Shapley and M. Hawken, “Neural mechanisms for color perception in the primary visual cortex,” Current Opinion in Neurobiology, vol. 12, pp. 426-432, 2002. [77] A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Research, vol. 37, pp. 83-97, 1997. [78] P. M. Pearson and F. A. A. Kingdom, “Texture-orientation mechanisms pool colour and luminance contrast,” Vision Research, vol. 42, pp. 1547-1558, 2002. [79] K. T. Mullen and M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” Journal of the Optical Society of America A, vol. 11, pp. 3136-3151, 1994. [80] B. Poirson and B. Wandell, “Pattern-color separable pathways predict sensitivity to simple colored patterns,” Vision Research, vol. 36, pp. 515-526, 1996. [81] N. Graham, J. Beck, and A. Sutter, “Nonlinear processes in spatial-frequency channel models of perceived texture segregation: Effects of sign and amount of contrast,” Vision Research, vol. 32, pp. 719-743, 1992. [82] D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Visual Neuroscience, vol. 9, pp. 181-197, 1992. [83] D. G. Albrecht and R. L. De Valois, “Striate cortex responses to periodic patterns with and without the fundamental harmonics,” Journal of Physiology, vol. 319, pp. 495-514, 1981. [84] J. Malik, S. Belongie, T. Leung, and J. Shi, “Contour and texture analysis for image segmentation,” International Journal of Computer Vision, vol. 43, pp. 7-27, 2001. [85] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, pp. 530-549, 2004. [86] P. Kruizinga and N. Petkov, “Computational models of visual neurons specialized in the detection of periodic and aperiodic oriented visual stimuli: Bar and grating cells,” Biological Cybernetics, vol. 76, pp. 83-96, 1997. [87] P. Kruizinga and N. Petkov, “Nonlinear operator for oriented texture,” IEEE Transactions on Image Processing, vol. 8, pp. 1395-1407, 1999. [88] S. E. Grigorescu, N. Petkov, and P. Kruizinga, “Comparison of texture features based on Gabor filters,” IEEE Transactions on Image Processing, vol. 11, pp. 1160-1167, 2002. [89] J. Rivest and P. Cavanagh, “Localizing contours defined by more than one attribute,” Vision Research, vol. 36, pp. 53-66, 1996. [90] M. S. Landy and H. Kojima, “Ideal cue combination for localizing texture-defined edges,” Journal of the Optical Society of America A, vol. 18, pp. 2307-2320, 2001. [91] P. V. McGraw, D. Whitaker, D. R. Badcock, and J. Skillen, “Neither here nor there: Localizing conflicting visual attributes,” Journal of Vision, vol. 3, pp. 265-273, 2003. [92] University of Oulu Texture Database [Online]. Available: http://www.outex.oulu.fi/outex.php.
|