跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/14 02:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張郡文
研究生(外文):Chun-Wen Chang
論文名稱:積體光電子模組中光波連結與元件整合之研究
論文名稱(外文):Optical Interconnections and Integration in Photonic-System-on-Package Modules
指導教授:謝文峰謝文峰引用關係
指導教授(外文):Wen-Feng Hsieh
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:英文
論文頁數:120
中文關鍵詞:光子晶體積體光學
外文關鍵詞:Photonic CrystalIntegrated Optics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文提出一矽基板光電子單晶片構裝模組。該模組中包括光子晶體波導元件、平面漸變光波導、平面彎曲波導與平面光波導分光元件等關鍵元件的光學與物理特性,並針對該模組中光電子整合的技術進行分析與討論。就光子晶體波導與傳統平面光波導耦合的技術,本文提出了藉由軸向的光模匹配理論能更大幅增加光子晶體波導與傳統平面光波導之間的耦合效率(從30%到86%)。此外,為了更有效利用矽基板中光波傳導密度,本文提出了使用積體光學中微透鏡組來設計高效率小體積之平面漸變光波導、平面彎曲波導與平面光波導分光元件等關鍵元件。最後,本文提租兩種矽基光電平台為基礎的元件,包括光通訊系統中平面光收發器與光讀寫頭應用之雙波長雷射模組來展示矽基板光電子單晶片構裝模組中光電子整合與光波信號水平與垂直傳遞之技術。
In this study, a concept of silicon-based photonic-system-on-package (PSOP) modules is presented. Key components of PSOP modules such as photonic crystal (PhC) integrated circuits, conventional slab waveguides, and photonic/electronic integration are discussed and analyzed in this dissertation. By shifting the waveguide junction longitudinally, the coupling efficiency between PhC and conventional silica waveguides can be increased from 30% to 86% readily. In order to make good use of the silicon substrate in a PSOP module, the guided-wave lenses are employed to design ultra-compact waveguide tapers, bends, and splitters with wide bandwidth and low insertion losses. Two integrated optical modules, transmitter/receiver optical subassemblies and two-wavelength laser modules, using the silicon optical bench technology are presented to demonstrate photonic-electronic integration of the proposed PSOP modules.
Table of Contents
1. Introduction………………………………………………………………..……1
2. Analysis Methods.................................................................................................4
2.1 Plane-Wave Expansion Method………………………………………….....4
2.2 Finite-Difference Beam Propagation Method……………………………....7
2.3 Finite-Difference Time-Domain Method…………………………………...9
3. Waveguiding in Photonic Crystal and Slab Waveguides…………………...14
3.1 Bloch modes of two-dimensional photonic crystals waveguide…………..14
3.2 Step-index two-dimensional slab waveguides…………………………….16
4. High-Efficiency Coupling between External and Photonic Crystal Waveguides by Longitudinally Shifting Waveguide Junctions……………..22
4.1 Introduction………………………………………………………………..22
4.2 Analysis Method…………………………………………………………..24
4.3 Results and Discussion…………………………………………………….27
4.4 Conclusion………………………………………………….……………...30
5. Guided-Wave Lens Applications to Waveguide Tapers, Bends and Splitters in Photonic Interface Circuits………………………………………………...38
5.1 Design of Low Loss Tapered Waveguides Using Telescope Structure Compensation……………………………………………………………..38
5.1.1 Introduction……………………………………………………..38
5.1.2 Design rule…………………………………………………….. 39
5.1.3 Numerical results and discussion……………………………….41
5.1.4 Conclusion………………………………………………………45
5.2 Design and Analyses of Compact Bent-Tapered Waveguides Using Guided-Wave Lens Sets…………………………………………………...46
5.2.1 Introduction……………………………………………………..46
5.2.2 Theory…………………………………………………………..47
5.2.3 Abrupt-Bent Tapered Waveguides……………………………...49
5.2.4 Z-bend tapered waveguides…………………………………….50
5.2.5 Reflections and scattering from waveguide-lens boundaries…..51
5.2.6 Wavelength responses…………………………………………..52
5.2.7 Conclusion………………………………………………………52
5.3 Guided-Wave Microlens Array Applications to 1×8 Waveguide Splitters...54
5.3.1 Introduction……………………………………………………..54
5.3.2 Design method………………………………………………….55
5.3.3 Demonstrations of numerical calculation……………………….57
5.3.4 Conclusion……………………………………………………...62
6. Silicon Optical Benches for Photonic Circuit Boards……………………….82
6.1 SiOB applications to transmitter/receiver optical subassemblies…………..82
6.1.1 Fabrication processes of SiOBs……………………………………83
6.1.2 Hybrid optoelectronic integration in SiOBs……………………….84
6.1.3 Characterizations of SiOB-based Tx and Rx optical subassemblies84
6.1.4 Conclusion…………………………………………………………85
6.2 Hybrid Integration of Dual-Wavelength Semiconductor Lasers for DVD Optical Pickups……………………………………………………………..87
6.2.1 Introduction………………………………………………………..87
6.2.2 General design of silicon optical benches………………………....88
6.2.3 Fabrication Processes……………………………………………...91
6.2.4 Characterizations of the dual-wavelength laser module…………..93
6.2.5 Conclusion………………………………………………………...94
7. Conclusions and Future Work……………..………………………………….115
References…………………………………………………….…………………116
List of Figures and Tables
Fig. 1.1 A PSOP concept for photonic signal processing on a silicon substrate……3
Fig. 2.1 A 2-D PhC constructed by a triangular lattice of dielectric columns with radius r and lattice constant a……………………………………………...12
Fig. 2.2 Electromagnetic field configuration of TE polarization in the Yee mesh…12
Fig. 2.3 Calculation flow of the FDTD method……………………………………13
Fig. 3.1 The 2-D PCW analyzed in this study………………………………….…..18
Fig. 3.2 The band diagram of the PCW of Fig. 3.1………………………………..19
Fig. 3.3 The mode pattern of the PCW of Fig. 3.1 with the normalized frequency of f
= 0.287……………………………………………………………………19
Fig. 3.4 Diagram of the three-layer slab waveguide structure…………………….20
Fig. 3.5 Dispersion diagram for the symmetric slab waveguide………………….20
Fig. 3.6 The transverse intensity distribution of the TE0 and TE1 modes of the symmetric slab waveguides………………………………………………21
Fig. 4.1 Schematic of the structures analyzed for coupling from an external waveguide to the PCWs including the removed-row PCW and reduced-row PCW………………………………………………………………………32
Fig. 4.2 Band structures of the type-A PCW and type-B PCW……………………33
Fig. 4.3 Stationary intensity profiles of the A1, A2, B1, and B2 modes indicated in Fig. 4.3……………………………………………………………………34
Fig. 4.4 Transmittances and reflectances of the A1, A2, B1, and B2 modes as a function of the longitudinal positions of the waveguide junction between external waveguides and PhC waveguides……………………………….35
Fig. 4.5 Snapshots of the electric field distributions for maximum (z = 0.4a) and minimum (z = 0) transmittance of the B1 mode…………………………...36
Fig. 4.6 Transmission spectrum for the B1-PCW mode with the external waveguide at the maximum coupling efficiency………………………………….…...37
Fig. 5.1 Telescope structure compensation lenses in the tapered waveguide and the corresponding Galilean telescope system……………………………….…63
Fig. 5.2 Variation in the radii of the lenses and the efficiency of normalized transmission power versus the tapered angle……………………………...64
Fig. 5.3 Field distribution of the compensated and uncompensated tapered waveguides for Wi = 45 �慆, Wo = 9 �慆, and , respectively……..65
Fig. 5.4 The efficiency of transmitted power versus the conversion ratio of the compensated and the uncompensated tapered waveguides……………66
Fig. 5.5 Electric field distribution calculated by the finite difference time domain method for Wi = 27 �慆, Wo = 9 �慆, and ………………….…….67
Fig. 5.6 The geometry and basic operation principle of the conventional guided-wave lens tapered waveguides, the proposed abrupt-bent tapered waveguide and the proposed Z-bend tapered waveguides…………….…..69
Fig. 5.7 The transmittance versus the bent angles for the ABT waveguide by the BPM and the FDTD methods…………………………………….………..70
Fig. 5.8 Plots of the optical field intensity and the electric field intensity of the ABT waveguides……………………………………………………….………..71
Fig. 5.9 The transmittance versus the bent angles for the ZBT waveguide by the BPM and the FDTD methods……………………………………….…….72
Fig. 5.10 Plots of the optical field intensity and the electric field intensity of the ZBT waveguides…………………………………………………..…………….73
Fig. 5.11 Wavelength responses of the ABT and ZBT waveguides……………..…..74
Fig. 5.12 Schematics of the mode converter constructed by using a conventional telescope structure together with the 1×8 equal-power splitter with input and output single-mode channels 1-8…………………………….………..75
Fig. 5.13 Plot of field distribution along the equal-power splitter……….…………..76
Fig. 5.14 Distribution of output power on the 8 output channels as a function of the channel number. The channel 1 and 8 are the outermost output channels……………………………………………………………………77
Fig. 5.15 Electric field distributions in the input and output channels of the equal-power splitter………………………………………………………..78
Fig. 5.16 Distribution of output power on 8 output channels of the equal-power splitter with the parameters of radius deviations…………………………..79
Fig. 5.17 Distribution of output power on 8 output channels of the equal-power splitter with the parameters of the wavelength…………………………….80
Fig. 5.18 Wavelength responses of the proposed equal-power splitter……………...81
Fig. 6.1 Schematic views of a SiOB for the Tx application………………………..96
Fig. 6.2 Process flows of a SiOB…………………………………………………...97
Fig. 6.3 Processed SiOB for Tx and Rx subassemblies…………………………….98
Fig. 6.4 The assembled Tx subassembly…………………………………………...98
Fig. 6.5 The typical L-I curves and eye diagram of the Tx modulated at data rates of 155.5 Mbps………………………………………………………………..99
Fig. 6.6 Block diagram of the BER tester setup…………………………………..100
Fig. 6.7 The receiver eye diagrams at input power of -5 dBm and -38 dBm……..100
Fig. 6.8 Plot of BER vs. optical power level of the presented Rx optical subassembly……………………………………………………………...101
Fig. 6.9 Structures of hybrid-type dual-wavelength laser module………………..102
Fig. 6.10 Schematic diagram of a dual-wavelength laser module with two 45�a reflectors…………………………………………………………………102
Fig. 6.11 Opto-Mechanical structure of the SiOB………………………………….103
Fig. 6.12 Optical systems for evaluating desired smoothness of the micro reflector…………………………………………………………………..104
Fig. 6.13 Plots of normalized peak intensity of the focused spots of 650nm and 780nm laser beams versus the surface roughness of the reflectors and the corresponding field distribution of the focused spots……………………105
Fig. 6.14 Process flow of SiOBs with double-side 45�a mirrors……………………106
Fig. 6.15 SEM photograph of the processed SiOB…………………………………107
Fig. 6.16 Enlargement view of the micro reflector…………………………………108
Fig. 6.17 Measurements of surface roughness on the slope of the micro reflector…………………………………………………………………..108
Fig. 6.18 Photograph of the top view of the assembled dual-wavelength laser module…………………………………………………………………...109
Fig. 6.19 The packaged dual-laser module with two laser diodes simultaneously turned on…………………………………………………………………109
Fig. 6.20 Optical power against the injection current of the 650nm laser diode with and without the micro reflector………………………………………….110
Fig. 6.21 The parallel and perpendicular far-field patterns of the reflected beams of 650nm laser………………………………………………………………111
Fig. 6.22 3-D near-field patterns and cross sections of the direct laser beam……...112
Fig. 6.23 3-D near-field patterns and cross sections of the reflected beam………...113
Table 6.1 Typical electrical/optical characteristics of the presented Tx subassembly………………………………………………………………114
Table 6.2 Typical electrical/optical characteristics of the presented Rx subassembly………………………………………………………………114
[1] M. S. Bakir, T. K. Gaylord, O. O. Ogunsola, E. N. Glytsis, and J. D. Meindl, IEEE photon. Techno. Lett., Vol. 16, 117 (2004).
[2] G. K. Chang, D. Guidotti, F. Liu, Y. J. Chang, Z. Huang, V. Sundaram, D. Balaraman, S. Hegde, and R. R. Tummala, IEEE Trans. Adv. Packag., Vol. 27, 386 (2004).
[3] R. D. Meade et al., J. Appl. Phys., Vol. 75, 4753 (1994).
[4] M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, Appl. Phys. Lett. Vol. 76, 952 (2000).
[5] A. Martinez, F. Cuesta, and J. Marti, IEEE Photon. Technol. Lett., Vol. 15, 694 (2003).
[6] Marin Soljacic et al., J. Opt. Soc. Am. B, Vol. 19, 2052 (2002).
[7] M. Koshiba, J. Lightwave Technol., Vol. 19, 1970 (2001).
[8] N. Molla and G.-L. Bona, J. Appl. Phys., Vol. 93, 4986 (2003).
[9] P. Pottier, I. Ntakis, R. M. De La Rue, Opt. Commun., 223, 339 (2003).
[10] P. Sanchis, J. Marti, A. Garcia, A. Martinez, and J. Blasco, Electron. Lett., Vol. 38, 961 (2002).
[11] D. W. Prather, J. Murakowski, S. Shi, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, Opt. Lett., Vol. 27, 1601 (2002).
[12] E. Miyai, M. Okano, M. Mochizuki, and S. Noda, Appl. Phys. Lett., 81, 3729 (2002).
[13] Ph. Lalanne and A. Talneau, Opt. Express, Vol. 10, 354 (2002).
[14] T. D. Happ, M. Kamp, and A. Forchel, Opt. Lett., Vol. 26, 1102 (2001).
[15] A. Mekis and J. D. Joannopoulos, J. Lightwave Technol., Vol. 19, 861 (2001).
[16] H. B. Lin, J. Y. Su, P. K. Wei, and W. S. Wang, IEEE J. Quantum Electron., Vol. 30, 2827 (1994).
[17] M. M. Minot and C. C. Lee, J. Lightwave Technol., Vol. 8, 1856 (1990).
[18] T. J. Su, and C. C. Lee, IEEE Photon. Technol. Lett., Vol. 6, 89 (1994).
[19] K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, IEEE Photon. Technol. Lett., Vol. 5, 345 (1993).
[20] O. Mitomi, K. Kasaya, and H. Miyazawa, IEEE J. Quantum Electron., Vol. 30, 1787 (1994).
[21] R. S. Fan and R. B, Hooker, IEEE J. Lightwave Technol., Vol. 17, 466 (1999).
[22] M. Popovic, K. Wada, S. Akiyama, H. A. Haus, J. Michel, J. Lightwave Technol., Vol. 20, 1762 (2002).
[23] J. J. Su, and W. S. Wang, IEEE Photon. Technol. Lett., Vol. 14, 1112 (2002).
[24] A. M. Shajakhan, S. Aditya, Microwave and Opt. Techno. Lett., Vol. 24, 267 (2000).
[25] E. A. J. Marcatili, IEEE J. Quantum Electron., Vol. 21, 307 (1985).
[26] C. Chaudhari, D. S. Patil, and D. K. Gautam, Opt. Commun., Vol. 193, 121 (2001).
[27] T. Yabu, M. Geshiro, and S. Sawa, J. Lightwave Technol., Vol. 19, 1376 (2001).
[28] W. Y. Hung, H. P. Chan, and P. S. Chung, Electron. Lett., Vol. 24, 1365 (1988).
[29] T. J. Wang, Y. H. Wang, and W. S. Wang, IEEE Photon. Technol. Lett., Vol 12, 164 (2000.
[30] C. C. Huang, C. Y. Chang, and W. S. Wang, Microwave Opt. Technol. Lett., Vol. 38, 337 (2003).
[31] J. A. Besley, J. D. Love, and W. Langer, J. Lightwave Technol. Vol. 16, 678 (1998).
[32] R. M. Jenkins, R. W. Devereux, and J. M. Heaton, Opt. Lett., Vol. 17, 991 (1992).
[33] C. Themistos, B. M. A. Rahman, Appl. Opt., Vol. 41, 7037 (2002).
[34] T. Rasmussen, J. K. Rasmussen, and J. H. Povlsen, J. Lightwave Technol., Vol. 13, 2069 (1995).
[35] P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, J. Lightwave Technol., Vol. 12, 1004 (1994).
[36] J. Park, Y. Chung, S. Baek, and H.-J. Lee, IEEE Photon. Technol. Lett., Vol. 14, 651 (2002).
[37] A. Ambrosy, H. Richter, J. Hehmann, and D. Ferling, IEEE Trans. Comp., Package., Manufact. Technol. A*, Vol. 19, 34 (1996).
[38] Mark W. Beranek, et al., IEEE Trans. Adv. Packag., Vol. 23, 461 (2000)
[39] K. Sakoda, Optical Properties of Photonic Crystal, Spring-Verlag, 2001.
[40] K. Sakoda, and K. Ohtaka, Phys. Rev. B, Vol. 54, 5732 (1996).
[41] G.R. Hadley, Opt. Lett., Vol. 16, 624 (1991).
[42] G.R. Hadley, J. Quantum Electron., Vol. 28, 363 (1992).
[43] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method for Electromagnetics, (Artech House, Boston, 2000).
[44] H. Nishihara et al, Optical Integrated Circuits, McGraw-Hill, 1989.
[45] K. Hosomi and T. Katsuyama, IEEE J.Quantum Electron., Vol. 38, 825 (2002).
[46] J. Zimmermann, M. Kamp, A. Forchel, R. Marz, Opt. Commun. Vol. 230, 387 (2004).
[47] A. Martinez, J. Garcia, G. Sanchez, and J. Marti, J. Opt. Soc. Am. A, Vol. 20, 2131 (2003).
[48] M. Tokushima and H. Yamada, Appl. Phys. Lett., Vol. 84, 4298 (2004).
[49] S. G. Johnson and J. D. Joannopoulos, Opt. Express, Vol. 8, 173 (2001.
[50] R. Syms and J. Cozens, Optical guided waves and devices, international ed., McGraw-Hill international limited, UK, 1993.
[51] A. Morand, C. Robinson, Y. Desieres, T. Benyattou, P. Benech, O. Jacquin, M. Le Vassor d’Yerville, Opt. Commun., Vol. 221, 353 (2003).
[52] C. W. Chang, M. L. Wu, and W. F. Hsieh, IEEE Photon. Technol. Lett., Vol. 15, 1378 (2003).
[53] C. T. Lee, M. L. Wu, and J. M. Hsu, IEEE J. Lightwave Technol., Vol. 15, 2183 (1997).
[54] K. Worhoff, A. Driessen, P.V. Lambeck, L.T.H. Hilderink, P.W.C. Linders, and Th. J. A. Popma, Sensors and Actuators, Vol. 9, 74 (1999).
[55] M. Uekawa, H. Sasaki, D. Shimura, K. Kotani, Y. Maeno, and T. Takamori, IEEE Photon. Technol. Lett., 15, 945 (2003.
[56] D. Yap, A. Au, and L. K. Kendall, IEEE Trans. Adv. Packag., Vol. 24, 586 (2001)
[57] G. Joo, S. Lee, K. Park, J. Choi, N. Hwang, and M. Song, IEEE Trans. Adv. Packag., Vol. 23, 681 (2000)
[58] R. Moosburger, R. Hauffe, U. Siebel, D. Arndt, J. Kropp, and K. Petermann,, IEEE Photon. Technol. Lett., Vol. 11, 848 (1999).
[59] Y. Akahori, T. Ohyama, T. Yamada, K. Katoh,.and T. Ito, IEEE Photon. Technol. Lett., 11, 454 (1999).
[60] T. Hashimoto, Y. Nakasuga, Y. Yamada, H. Terui, M. Yanagisawa, Y. Akahori, Y. Tohmori, K. Kato, and Y. Suzuki, J. Lightwave Technol., Vol. 16, 1249 (1998).
[61] A. Goto, S. Nakamura, K. Kurata, K. Komatsu, and S. Ishikawa, IEEE Trans. Comp., Package., Manufact. Technol. B*, Vol. 21, 140, (1998).
[62] I. Ikushima et al., J. Lightwave Technol., Vol. 13, 517 (1995).
[63] D. Leclerc et al, IEEE Photon. Technol. Lett., Vol. 7, 476 (1995).
[64] G. Ensell, Sens. Actuators A, Vol. 53, 345 (1996).
[65] A. Mickelson, N. R. Basavanhally, and Y. C. Lee, Optoelectronic packaging, John Wiley & Sons Inc., 1997.
[66] T. Taniguchi, Chiba, C. Kojima, Kanagawa, U.S. Patent 6,134,208, (2000).
[67] K. Nemoto, T. Kamei, H. Abe, D. Imanishi, H. Narui, and S. Hirata, Appl. Phys. Lett. Vol. 78, 2270 (2001).
[68] T. Shiomoto, Kashihara, I. Kohashi, Gojo, U.S. Patent 6,456,6354, (2002).
[69] C. Strandman, L. Rosengren, H. G. A. Eldersig, and Y. Backlund, J. Microelectromach. Syst,. Vol. 4, 213 (1995).
[70] A. Yoshikawa, H. Nakanishi, K. Itoh, T. Yamazaki, T. Komino, and T. Musha, IEEE Trans. Comp., Packag., Manufact.Technol. B*, Vol. 18, 245 (1995).
[71] M. Sekimura and H. Naruse, in Proc. Solid-State Sensor and Actuators, Transducers ’99, 550 (1999).
[72] J. Arnaud, App. Opt., Vol. 24, 538 (1985).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 10. 林美蓉,“中年婦女的發展特質”,景文技術學院學報,第11期下內,2001年,頁55-61。
2. 10. 林美蓉,“中年婦女的發展特質”,景文技術學院學報,第11期下內,2001年,頁55-61。
3. 5.李宗派,“中年期之危機與轉機適應”,社會建設,第84期,1993年,頁27-36。
4. 5.李宗派,“中年期之危機與轉機適應”,社會建設,第84期,1993年,頁27-36。
5. 8.林春梅、李麗傳,“因應組織再造的決策理論之應用”,領導護理,第3期第2卷,1999年,頁53-56。
6. 8.林春梅、李麗傳,“因應組織再造的決策理論之應用”,領導護理,第3期第2卷,1999年,頁53-56。
7. 15.曹麗英,“台灣婦女停經期經驗之探討──處於健康多變的時期”,護理研究,第6期第6卷,1998年,頁448-459。
8. 15.曹麗英,“台灣婦女停經期經驗之探討──處於健康多變的時期”,護理研究,第6期第6卷,1998年,頁448-459。
9. 18.郭俞良、李成業,“女性荷爾蒙對停經婦女的心血管保護”,國防醫學,第29期第2卷,1999年,頁174-177。
10. 18.郭俞良、李成業,“女性荷爾蒙對停經婦女的心血管保護”,國防醫學,第29期第2卷,1999年,頁174-177。
11. 20.陳慧玲,“HRT-更年期的荷爾蒙治療”,藥學雜誌,第12期第4卷,1996年,頁48-53。
12. 20.陳慧玲,“HRT-更年期的荷爾蒙治療”,藥學雜誌,第12期第4卷,1996年,頁48-53。
13. 28.劉淑娟,“中年婦女自我照顧行為及其相關因素探討”,護理研究,第7期第3卷,1999年,頁221-233。
14. 28.劉淑娟,“中年婦女自我照顧行為及其相關因素探討”,護理研究,第7期第3卷,1999年,頁221-233。
15. 29.鄧振源、曾國雄,“層級分析法的內涵特性與應用”,中國統計學報,第27卷,第7期,頁13767-13870。