(3.238.130.97) 您好!臺灣時間:2021/05/10 13:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:胡應強
研究生(外文):Ying-Chiang Hu
論文名稱:覆晶接點與錫電路之電遷移微結構變化模式研究
論文名稱(外文):Electromigration Induced Microstructure change in Flip Chip Solders Joint and Tin Stripe
指導教授:高振宏高振宏引用關係
指導教授(外文):C. R. Kao
學位類別:博士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:中文
論文頁數:107
中文關鍵詞:銲料錫電路電遷移微結構固態擴散
外文關鍵詞:solderelectromigrationTin stripeMicrostructuresolid state diffusion
相關次數:
  • 被引用被引用:4
  • 點閱點閱:262
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
摘要
電遷移效應對金屬導線的影響,一直被人們重視,近年來由於半導體與微機電工業之興起,大電流對微細化電路之影響,顯得特別重要,本文針對微細之錫導線與覆晶式共晶錫鉛接點在常溫下(30oC)與高溫下(100oC,70 oC)通入電流密度4�e104 A/cm2 之電流,並分別以即時與間時的實驗方式,進行微結構變化觀察,因電遷移效應所造成孔洞之形成與衍生失效之機構之研究。
研究發現,錫導線方面,最初時,在晶界之交界處,會有結構之變化,而使部分晶體結構產生重組,至一段時間後,因其為多層晶體排列結構,並無錫鬚之生成,而觀察到的現象為先行成累積的晶粒突起後,孔洞相伴生成。在研究中發現了電流對錫導線影響中,錫晶粒會因電流作用下產生反轉現象,經x-ray microdiffraction確認,晶體結構朝向電阻梯度產生的方向變化。
在覆晶接點方面,研究中同樣發現銲料中微結構因電遷移而產生孔洞與凸起之結構變化,但在研究過程中,也發現到晶片端之銅導線部分擴散至銲料中生成大量Cu6Sn5,並造成銅導線之尺寸變小後,引發電流聚集效應,使銅導線產生因溫度之劇升而溶解之現象,最後產生斷路之失效模式。以即時試驗觀察發現,在通電過程中,覆晶接點之銲料中,經EPMA觀察,確認有銅化合物之成分存在,確認此部份之銅原子電遷移現象。
另一方面,為得到接點的溫度分布,使用熱流計法來量測,其實驗方式為使用一端加熱,量測另一端之溫度分布變化,並由文獻得到各成分之熱傳導係數值,經計算後得到接點實際之溫度狀況,釐清熱遷移與電遷移之區隔。結果發現,在實驗中之尺度下,本研究之實驗模組,熱遷移之效應並未發生,僅觀察出電遷移的影響模式。
本研究提供了評估覆晶式接點之實際壽命的方法,並觀察到幾種利用加速模式得到之失效機制,並仔細地觀察介面之行為,得以提供相關學者參考。
Abstract
The electromigration failure mechanism in conducting wire and solder joints through the large current density was studied in detail. When environmental temperature was changed to room temperature, 70 oC and 100oC with a nominal current density of 4�e104 A/cm2, the time to failure increased. The void formation-and-propagation failure mechanism was observed in situ and free time.
Under constant current electromigration, white tin exhibited grain growth. We observed that high-resistance grains reorient with respect to the neighboring low resistance grains, most likely by grains growth of the latter. Microstructure evolution under electromigration could be responsible for the resistance drop.
The electromigration failure mechanism in flip chip solder joints through the rapid dissolution of the Cu metallization on the cathode side. The average dissolution rate was about 1�慆/min. The results of this study indicate that temperature, as an experimental variable, is not less import than the current density in electromigration study. The surface temperatures of the chip and substrate during electromigration were also measured. The temperature distribution of the Si chip was reasonably homogeneous due to the fact that Si is a very good thermal conductor. It was also reasoned that the high thermal conductivity of the PbSn solder could not support a temperature gradient large enough to induce thermomigration across the solder joint in the present study. Experimentally, no evidence of mass transport due to thermomigration was observed.
A different mechanism of failure under electromigration from grain growth and Cu dissolution, shows that the incubation time of void nucleation is a good indicator of the real lifetime of a joint under current-stressing.
目次
摘要…………………………………………………………………I
目次…………………………………………………………………III
圖目錄………………………………………………………………VI
表目錄………………………………………………………………XIII
研究動機……………………………………………………………1
第一章、緒論………………….…………………………………2
第二章、文獻回顧…………………………………………………5
2.1 何為產生電遷移現象…………………………………………5
2.1.1電遷移的研究方法……………………………………………5
2.1.2電遷移的研究歷史……………………………………………6
2.1.3電遷移的理論模式……………………………………………8
(a) 純金屬的電遷移模式…………………………………………9
(b) 合金及摻雜他種元素的電遷移………………………………13
(c) 錫鉛合金電遷移模式………………………………………15
2.1.4 溫度與電子風效應產生原子移動反轉現象………………24
2.2 電遷移之活化能估算…………………………………………25
2.3 尺度對電遷移影響……………………………………………28
2.4 Current Crowing現象………………………………………29
2.5 高電流密度下導線電阻之變化………………………………33
2.6 電遷移的可靠度推算…………………………………………34
2.7 熱遷移現象……………………………………………………35
2.8 電遷移對界面反應之影響……………………………………37
2.9 錫鬚成長………………………………………………………39
第三章、研究方法……………………………………………………40
3.1 覆晶型樣品製備……………………………………………40
3.1.1 DCA基板製作…………………………………………………40
3.1.2 覆晶式晶片製作……………………………………………43
3.1.3 測試模組之接合……………………………………………48
3.2 錫薄膜樣品製備……………………………………………50
3.2.1 電遷移試片製作……………………………………………52
3.3 錫膜線路通電實驗.………………………………………54
3.3.1 計算面積與電流密度………………………………………54
3.3.2 熱處理實驗…………………………………………………55
3.3.3 試片分析………………………..…………………………55
3.4 覆晶模組結構確認………………………………………55
3.4.1 晶片端之實驗結構………………………………………56
3.4.2 基板端之實驗結構………………………………………58
3.5 通電試驗…………………………………………………58
3.5.1 整顆覆晶模組通電實驗…………………………………59
3.5.2 半顆覆晶銲點即時觀察通電實驗………………………60
3.6 測試模組的溫度測量……………………………………61
3.6.1 熱流計法測量溫度分佈…………………………………61
3.7 金相分析…………………………………………………62
第四章、錫電路之電遷移研究……………………………………63
4.1 純錫電路之電遷移研究………………………………………63
4.1.1 較長尺寸之通電結果………….…………………………65
4.1.2 較長尺寸100 oC下之通電結果……………………………68
4.1.3 較短尺寸下之通電結果……………………………………68
4.2 純錫線路之熱處理實驗結果…………….………………77
4.3 晶格結構之變化……………………………………………80
4.4 純錫線路部分結果與討論.………………………………81
4.5 錫電路研究結論………………………………………….83
第五章、覆晶模組之電遷移研究……………………………….87
5.1 100oC溫度條件實驗結果.………………………………88
5.2 70oC溫度條件實驗結果….………………………………90
5.3 模組中的熱遷移…………………………………………92
5.4 即時(In-situ)觀察電遷移……………………………94
5.5 覆晶模組之電遷移討論………………………………97
5.6 覆晶模組之電遷移結論…………………………………98
第六章、總結論…………….…………………………………100
Refence
Reference
1. Alberd T Wu, K. N. Tu, J. R. Lloyd, N. Tamura, B. C. Valek, and C. R. Kao, J. Appl. Phys. 85, p2490, 2004.
2. Y. C. Hu, Y. H. Lin, C. R. Kao, and, K. N. Tu, J. Mater. Res. 18, p2544 , 2003.
3. J. R. Black, IEEE Trans. On Electron Devices, ED-16, p348, 1969.
4. J. R. Lloyed. R. H. Koch, Appl. Phys. Lett., Vol. 52, p194, 1988
5. Norman G. Einspruch, VLSI Electronics Microstructure Science, Volume 15. Academic, New Yorh, Chapter 8, 1987.
6. H. Onoda, M. Kageyama. Y. Tatara and Y. Fukuda, IEEE trans. On Electron Devices, ED40, p1614, 1993.
7. H. Onoda, M. Kageyama and K. Hashimoto, J. Appl. Phys., Vol.77, p885, 1996.
8. J. O. Olowolafe, H. kawasaki, C. C. Lee, J. Klein, F. Pintchovski and D. Jawarani, Appl, Phys. Lett., Vol62, p2445, 1993.
9. J. Wada, K. Suguro, N. Hayasaka and H. okano, Jpn. J. appal. Phys. Vol32, p 3094, 1993.
10. C. K. Hu, M. B. Small, K. P. Robell, C. Stanis, P. Blauner and P. S. Ho, Appl. Phys. Lett., Vol.62, pp1023, 1993.
11. M. Y. Hsieh and H. B. Huntington, Journal of Physical and Chemistry of Solids, Vol. 39, p861, 1978.
12. A. N. Campbell, R. E. Mikawa and D. B. Knorr, Jounal of Electronic Materials, Vol.22, pp589, 1992.
13. H. Yamamoto, S. Fujii, T. Kakiuchi, K. Yano and T. Fujita, in technical Digest of 1987 Int. Electron Devices Meet., IEEE, p207.
14. Black. J. R., Proc. 6th ann Int Rel, Phys symp., p9148, 1967.
15. H.B.Humtington, “Diffusion in solids: Recent Development”, edited by A. S. Nowick and J. J. Burton, Academic Press, New York, p303, 1975.
16. H.B.Humtington and A.R.Grone, Journal of physics and Chemical of solids, Vol.20, p76,1961.
17. V.B. Fiks, Soviet physics- Solid State, Vol. 1, p14, 1959.
18. J. P. Dekker and A. Lodder, Journal of Applied Physics, Vol 84, No. 4, p1958, 1998
19. W. Kohn and N. Rostoker, Phys. Rev. 94, P1111, 1954.
20. B.N. Agarwala, “Dependence of Electro-migration Induced Failure Time on length and Width of Aluminum Thin Film Conductor”, JAP-41, p3965, 1970.
21. Y.C. Joo. S. P., Earzt, ACTA. Mater., Vol 46, No.6, p1964, 1998.
22. J. H. Lau, Low Cost Flip Chip Technologies, (McGraw-Hill, N. Y., 2000) p14.
23. S. Brandenburg and S. Yeh, Surface Mount International Conference and Exposition, SMI 98 Proceedings, p337, 1998.
24. H.U.Schreiber, Solder-state Electronices, Vol 24, p585, 1985.
25. J. Shi and H. B. Huntington, Journal of Physical and Chemistry of Solids, Vol. 48, p693, 1978.
26. H. Nakajima and H. B. Huntington, Journal of Physical and Chemistry of Solids, Vol. 42, p171, 1981.
27. H.B.Humtington, C. K. Hu, S. N. Mei, in “Diffusion in solids: Recent Developments”, edited by M. A. Dayanada and G. E. Murch, TMS, Warrendale, PA, p97, 1984
28. F. H. Huang and H. B. Huntington, Physical Review B, Vol 9, No.4, p1479, 1974.
29. C. Y. Liu, C. Chen, C. N. Liao, and K. N. Tu, Appl. Phys. Lett. 75, p 58, 1999.
30. 曾偉志著『多層組內連線中的電遷移及應力遷移現象』,電子月刊,第二卷第六期,p80,1996。
31. A. Christou, Electromigration and electronic device degradation(Wiley), Ch. 2, 1994.
32. J R Lloyd, J. Phys. D: Appl. Phys. 32 , p109, 1999.
33. C. Y. Liu, Chih Chen, and K. N. Tu, J. Appl. Phys., 88, November, p5703, 2000.
34. T. Y. Lee, and K. N. Tu, J. Appl. Phys., 89(6), March, p3189, 2001.
35. Q. T. Huynh, C. Y. Liu, Chih Chen, and K. N. Tu, J. Appl. Phys., Vol. 89, April, p4332, 2001.
36. V. N. Pimenov, K. P. Gurov, K. I. Khurdyakov, S. S. Dol’nikov, R. A. Milievskii, V. S. Hhlomov, and Yu, G. Miller, Fiz. Khim. Obrabotki Materialov, Vol 1, p107, 1978.
37. M. Braunovic and N. Alexandrov, IEEE Transactions on Components, Packaging and Manufacturing Technology –part A, Vol. 17(1), p 78, 1994
38. W. C. Liu, S. W. Chen and C. M. Chen, Journal of Electronic Materials, Vol. 27(1), p15, 1998.
39. N. Bertolino, J. Garay and Z. A. Munir, Scripta Materialia, Vol. 44, p737, 2001.
40. W. Roush and J. Jaspal, Proceedings of the Electron. Compon. 32nd Conference, San Diego, CA, p342, 1982.
41. C. Y. Liu, C. Chen, C. N. Liao, and K. N. Tu, Appl. Phys. Lett. 75, p58, 1999.
42. C. Y. Liu, C. Chen, and K. N. Tu, J. Appl. Phys. 88, p5703, 2000.
43. Yongsunthon, A. Stanishevsky, J. McCoy and E. D. Williams, Appl. Phys. Lett. 78, p2661, 2001.
44. K. N. Tu, C. C. Yeh, C. Y. Liu and Chih Chen, Appl. Phys. Lett. 76, p988, 2000.
45. I. A. Blech and C. Herring, Appl. Phys. Lett. 29, p131, 1976R.
46. E. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Letts. 80, p580, 2002.
47. K. Zeng and K. N. Tu, Mater. Sci. & Eng. R 38, p55, 2002.
48. J. D. Wu, P. J. Zheng, K. Lee, C. T. Chiu, and J. J. Lee, Proceedings of the 2002
49. Electronic Components and Technology Conference ,IEEE, NY, p452, 2002.
50. J. H. Zhao, Electromigration and Electronic Device Degradation, Wiley, p 171, 1994.
51. J. N. Pratt and R. G. R. Sellors, in “ Diffusion and Defect Monograhh Series No.2: Electrotransport in Metal and Alloys”, edited by Y. Adda, A. D. Le claire, L. M. Slifkin, and F. H. Wohlbier, Trans Tech SA, Riehen, Switzerland.
52. 84. J. R. Black, Proceedings of The IEEE, Vol 57, p1587, 1969.
53. K. N. Tu, J. Appl. Phys. 94, p5451, 2003.
54. H. Ye, C. Basaran, and D. Hopkins, Appl. Phys. Lett. 82, p1045, 2003.
55. H. Ye, C. Basaran, and D. Hopkins, Int. J. Solids Struct. 40, p4021, 2003.
56. H. Ye, C. Basaran, and D. Hopkins, Int. J. Solids Struct. 40, p7269, 2003.
57. W. J. Choi, E. C. C. Yeh, and K. N. Tu, J. Appl. Phys. 94, p5665, 2003.
58. J. W. Nah, K. W. Paik, J. O. Suh, and K. N. Tu, J. Appl. Phys. 94, p7560, 2003.
59. Y. C. Hsu, T. L. Shao, C. J. Yang, and C. Chen, J. Electron. Mater. 32, p1222, 2003.
60. T. L. Shao, K. C. Lin, and C. Chen, J. Electron. Mater. 32, p1278, 2003.
61. K. Jung and H. Conrad, J. Mater. Sci. 39, p1803, 2004.
62. Y. H. Lin, C. M. Tsai, Y. C. Hu, Y. L. Lin, and C. R. Kao, J. Electron. Mater., in press.
63. K. N. Tu, J. Appl. Phys. 94, p5451, 2003.
64. C. M. Tsai, W. C. Luo, C. W. Chang, Y. C. Shieh, and C. R. Kao, J. Electron. Mater., in press.
65. D.G. Pierce, P.G. Brusius, Microelectron Retab, vol37, No.7, p1053, 1997.
66. Shatzkes. M, Lloyd. J.R., J. Appl. Phys, 59(11), p3890, 1986.
67. D. A. Golopentia and H. B. Huntington, Journal of Physical and Chemistry of Solids, Vol. 39, p975, 1978.
68. J. R. Lloyd, J. Appl. Phys. 94(10) p6483, 2003.
69. E. G. Liniger, C. -K. Hu, L. M. Gignac, and A. Simon, J. Appl. Phys. 93(12) p9576, 2003.
70. Hua Ye, Cemal Basaran, and Douglas Hopkins ., Appl. Phys. Lett. 82(7) p1045, 2003.
71. R. G. Filippi, R. A. Wachnik, C.-P. Eng, D. Chidambarrao, P.-C. Wang, J. F. White, M. A. Korhonen, T. M. Shaw, R. Rosenberg, and T. D. Sullivan ., J. Appl. Phys. 91(9) p5787, 2002.
72. J. R. Lloyd , AIP Conf. Proc. 612(1), p3 , 2002.
73. Akitomo Tachibana , AIP Conf. Proc. 612(1) , p105 , 2002.
74. Everett C. C. Yeh, W. J. Choi, K. N. Tu, Peter Elenius, and Haluk Balkan , Appl. Phys. Lett. 80(4), p580, 2002.
75. J. R. Lloyd , Appl. Phys. Lett. 79(7), p1061, 2001.
76. Nancy L. Michael and Choong-Un Kim, J. Appl. Phys. 90(9), p4370, 2001.
77. Everett C. C. Yeh and K. N. Tu , J. Appl. Phys. 89(6), p3203, 2001.
78. Q. T. Huynh, C. Y. Liu, Chih Chen, and K. N. Tu , J. Appl. Phys. 89(8) p4332 , 2001.
79. Choong-Un Kim, N. L. Michael, Qing-Tang Jiang, and Rod Augur , Rev. Sci. Instrum. 72(10), p3962, 2001.
80. C. Y. Liu, “Reliability of Solder Joints in Flip Chip Technology: Approaches from Fundamental Studies of Wetting, Interfacial reaction, Mechanical shear testing, and Electromigration”, Ph.D. Thesis, University of California, Los angeles, 2000.
81. C. Y. Chang, S. M. Sze, ULSI Technology, the McGRAW-HILL, P663, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔