(3.238.173.209) 您好!臺灣時間:2021/05/16 20:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃仲偉
研究生(外文):Chung-Wei Huang
論文名稱:奈米金/氧化錳觸媒之製備及其在氧化反應之應用
論文名稱(外文):PREPARATION OF MANGANESE DIOXIDE-SUPPORTED NANO-GOLD CATALYSTS AND ITS APPLICATION IN OXIDATION REACTION
指導教授:陳郁文陳郁文引用關係
指導教授(外文):Yu-Wen Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:93
語文別:英文
論文頁數:105
中文關鍵詞:燃料電池氣流中的CO選擇性氧化金觸媒奈米粒子CO氧化氧化錳擔體
外文關鍵詞:CO oxidationnanoparticlegold catalystsmanganese oxide supportselective oxidation of CO in H2fuel cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
長久以來,金觸媒是一門很熱門的研究題目並且被廣泛的討論。儘管在眾人的努力研究之下,金觸媒所擁有高活性的可能原因還是無法找出一個統一的解答,而且隨著實驗室的不同,也產生了分歧的見解。一般而言,所有的見解都提出擔體是影響金觸媒活性好壞的重要因素。而本篇研究主要是想發展出具有高度活性的金觸媒,而此一金觸媒是以氧化錳為擔體。在合成氧化錳的過程中,許多製備參數被改變,例如合成環境的pH值 (從8 ~ 12 )、煆燒溫度 (從120 ~ 400度)等等。除此之外,亦利用了好幾種方法來製備氧化錳,如固態反應法跟熱分解法等。此外,亦購入商業上所使用的氧化錳。這些氧化錳藉由XRD、XPS與氮吸附儀等儀器加以鑑定。由氮吸附儀的分析中得知由固態反應法所合成出的二氧化錳,在適當的合成環境下其表面積最高 (190 m2/g)。
金觸媒是藉由沈澱固著法來加以製備,以HAuCl4來當作金的前驅物,並以上段中所提到的氧化錳來當作擔體。而金觸媒亦由XRD、TEM 與XPS等儀器來加以鑑定。由於製備出的金粒子其粒徑約在4奈米之間因此超出XRD的偵測範圍,然而由TEM的鑑定結果可得知金的粒徑大小約在3~4奈米。而XPS亦顯示出金是以元素態存在。由上述鑑定結果可知本研究所使用的製備方法可製備出高度分散的奈米金粒子,其粒徑分佈約在3~4奈米之間。
對於低溫環境下的CO氧化反應方面,本研究是使用連續式固定床反應器。由反應結果顯示結晶性較好的氧化錳擔體具有較高的活性。此外,當金承載於四氧化三錳時,其反應性比承載在二氧化錳上差,這是因為二氧化錳是一種可還原性擔體。而可還原性擔體可提供CO氧化反應中所需的氧。
對在氫氣流下CO選擇性氧化反應方面,結晶程度高的二氧化錳擔體仍具有較高的觸媒活性。而承載在二氧化錳的金觸媒其反應活性依舊比承載在四氧化三錳者為高。而本篇研究中,氧化鈰以含浸法的方式添加進二氧化錳中。由於錳跟鈰彼此間交互作用的影響下,承載於其上的金觸媒在室溫一直到65度的反應環境下時,比單純承載在二氧化錳的金觸媒具有更高的活性。
Supported gold catalyst has been a subject of intense investigation. In spite of these efforts, there is still great uncertainty of the cause of the high activity and there is a wide variation in the activities reported among different laboratories. Superficially, all results suggest that the catalytic activity depends on the support. The aim of this study was to develop a method to prepare manganese oxide to be used as a support for gold to have a high activity. Several preparation parameters have been investigated for the synthesis of manganese oxide, such as pH value (from 8 to 12), calcination temperature (from 120℃ to 400℃), etc. Besides, several methods have been used to prepare MnO2, such as solid state reaction method and thermal decomposition. Some MnO2 was from commercial source. The manganese oxide was characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and N2 sorption. The N2 sorption analysis indicated that the surface area of MnO2 prepared in solid state reaction was very high (190 m2/g) under suitable preparation conditions.
Supported gold catalysts were prepared by deposition-precipitation using HAuCl4 as the Au precursor. The as-synthesized manganese oxide was used as the support.The gold catalysts were characterized by XRD, TEM, and XPS. The XRD results demonstrated that gold metal had a particle size under detection limit, which was less than 4 nm. TEM images clearly showed that the particle diameters of gold for all the samples were 3-4 nm. XPS spectra presented the Au4f7/2 peaks of the Au catalysts at binding energy below 84.0 eV. Therefore, the Au was in metal state Au0. The method applied in this study leads to a fairly uniform dispersion of gold nanoparticles with diameter 3-4 nm and narrow size distribution.
For low-temperature CO oxidation, the reaction was carried out. The catalytic activity was measured using a fixed bed continuous flow reactor. This research clearly showed that the well-crystallized MnO2 support gave a higher catalytic activity. In addition, in CO oxidation, the activity of 1 wt. % Au/Mn3O4 was lower than that of 1 wt. % Au/MnO2. This is because MnO2 is one of the reducible supports. The reducible support also can supply oxygen to the CO oxidation.
For CO selective oxidation in hydrogen stream, the well-crystallized of MnO2 support also gave a higher catalytic activity. The activity of 1 wt. % Au/Mn3O4 was lower than that of 1 wt. % Au/MnO2. In this study, CeOx was added in MnO2 by impregnation method. There was some kind of interaction between Mn and Ce. This interaction promoted the activity for CO oxidation in H2 from room temperature to 65 oC.
Table of Contents
Chapter 1. Introduction.……………………………………………………………...01
Chapter 2. Literature Review………………………………………………………...03
2.1 Preparation method……………………………………………………………03
2.2 Active state of Au...............................................................................................05
2.3 Au-support interaction........................................................................................06
2.4 Applications in catalysis……………………………………………………….07
2.4.1 CO oxidation………………………...........................................................07
2.4.2 VOC oxidation……………………………………………………………07
2.4.3 water-gas shift reaction………………………..……….………………….07
2.4.4 Chemical processing………………………...............................................07
2.4.5 Epoxidation of propylene…………………………………………………08
2.5 CO oxidation………………………………………………..............................08
2.5.1 Particle size effect………………………...................................................08
2.5.2 Support effect……………………………………………………………..08
2.5.3 Promoter………………………..……….…………………………………10
2.5.4 Reaction mechanism………………………...............................................11
2.6 Selective CO oxidation in H2 stream………………………………………….12
Chapter 3. Experimental……………………………………………………………...16
3.1 Chemical……………………………………………………………………….16
3.2 Catalyst preparation………………………………………………………........16
3.2.1 Preparation of manganese oxide support………………………………….16
3.2.2 Preparation of Mn1-xCexO2 support……………………………………….16
3.2.3 Preparation of gold catalysts……………………………………………...16
3.3. Characterization………………………………………………….………..…..17
3.3.1 N2-sorption………………………………………………….…..…………17
3.3.2 XRD………………………………………….…………............................18
3.3.3 TEM……………….……………………………………….……….……..18
3.3.4 ESCA………………………………………………….…………………..18
3.4 Reaction testing……………………………….……….………………………19
3.4.1 CO oxidation…………………………………………………….………..19
3.4.2 Selective CO oxidation in H2 stream…………………………….….…….19
Chapter 4. Gold catalysts in CO oxidation…………………………………………...20
4.1 Introduction……………………………………………………………………20
4.2 The effect of MnOx support……………………………………………………20
4.3 The effect of gold……………………………………………………………...38
4.4 Conclusion……………………………………………………………………..52
Chapter 5. Gold catalysts on selective CO oxidation………………………………...54
5.1 Introduction……………………………………………………………………54
5.2 The effect of MnOx support.…………………………………………………...55
5.3 The effect of gold……………………………………………………………...75
5.4 The promoting effect of Ce3+ for MnO2 support………………………………86
5.4 Conclusion……………………………………………………………………..93
Chapter 6. Conclusion……………………..................................................................96
Literature Cited……………………..........................................................................100
Akita, T., Lu, P., Ichikawa, S., Tanaka, K., and Haruta, M., “Analytic TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures”, Surf. Interface Anal., 31 (2001) 73-78.

Andreeva, D., Idakiev, V., Tabakova, T., and Andreev, A., “Low-Temperature Water-Gas Shift Reaction over Au/ ά-Fe2O3”, J. Catal, 158 (1996) 354

Ando, M., Kobayashi, T., Ijima, S., and Haruta, M., “Optical CO Sensitivity of Au-CuO Composite Film by Use of the Plasmon Adsorption Change”, Sensors and Actuators B, 96 (2003) 589-595.

Avgouropoulos, G., Ioannides, T., Papadopoulou, C., Batista, J., Hocevar, S., and Matralis, H. K., “A comparative study of Pt/r-Al2O3, Au/a-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen”, catal. Today, 75 (2002) 157-167.

Baiker, A, Kilo, M., Maciejewski, M., Menzi, S., Wokaun, A., in: Guczi, L., Salomosi, F., Tetenyi, P., Proceedings of the 10th International Congress on Catalysis, Budapest, 1992, part B, Elsevier, Amsterdam, (1993) 1257

Bethke, G.. K. and Kung, H. H., “Selective CO oxidation in a hydrogen-rich stream over Au/r-Al2O3 catalysts”, Appl. Catal. A: General, 194-195 (2000) 43-53.

Bond, G.. C. and Thompson, D. T., Catal. Rev.-Sci. Eng., 41 (1999) 319-388.

Bond, G.. C. and Thompson, D. T., Au Bull., 33 (2000) 41.

Bond, G.. C., “Gold: a relatively new catalyst”, Catal. Today, 72 (2002) 5-9.

Boccuzzi, F., Chiorino, A., Tsubota, S., and Haruta, M., Catal .Lett., 29 (1994) 225

Cuenya, A. R., Baeck, S. H., Jaramillo, T. F., Mcfarland, E. W., J. Am. Chem. Soc., 125 (2003) 12928.

Cameron, D., Corti, C., Holliday, R., and Thompson, D., “Gold-based catalysts for hydrogen processing and fuel cell systems”, adapted from web site of world godl council, www.wgc.org. (2003).

Cant, N. W., Ossipoff, N. J., “Cobalt promotion of Au/TiO2 catalysts for the reaction of carbon monoxide with oxygen and nitrogen oxides”, Catal. Today, 36 (1997) 125-133.

Choudhary, T. V., Sivadinarayana, C., Chusuei, C. C., Datye, A. K., Fackler, J. P., Jr., and Goodman, D. W., “CO oxidation on Supported Nano-Au Catalysts Synthesized form [Au(PPh3)6](BF4)2”, J. Catal, 207 (2002) 247

Cosandey, F. and Madey, T. E., Surf. Rev. Lett, 8 (2001) 73-93.

Costello, C. K., Kung, M. C., Oh, H. S., Wang, Y., and Kung, H. H., “Nature of the active site for CO oxidation on highly active Au/r-Al2O3”, Appl. Catal. A: General, 232 (2002) 159-168.

Date, M., Ichihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F., and Haruta, M., “Performance of Au/TiO2 catalyst under ambient conditions”, Catal. Today, 72 (2002) 89-94.

Dekkers, M. A. P., Lippits, M. J., and Nieuwenhuys, B. E., Catal. Lett., 56 (1998) 195

Dong, J. K., Jae, H. S., Hong, S. H, Noon, I. S., Korean J. Chem. Eng., 14 (1997) 486-490.

Freni, S., Calogero, G.., Cavallaro, S., J. Power Sources, 87 (2000) 28-38.

Gluhoi, A. C., Dekkers, M. A. P., and Nieuwenhuys, B. E., “Comparative studies of the N2O/H2, N2O/CO, H2/O2 and CO/O2 reactions on supported gold catalysts: effect of the addition of various oxides”, J. Catal, 219, (2003) 197.

Grisel, R.J.H. and Nieuwenhuys, B.E., “A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts”, Catal. Today, 64 (2001) 69-81.

Grisel, R. J. H. and Nieuwenhuys, B. E ., “Selective Oxidation of CO, over Supported Au Catalysts”, J. Catal, 199, (2001) 48.

Grisel, R. J. H., Westrstrate, C. J., Goossens, A., Craje, M. W. J., Van der Kraan, A. M., and Nieuwenhuys, B. E., “Oxodation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment”, Catal. Today, 72, (2002) 123-132.

Grunwaldt, J.D., Maciejewski, M., Becker, O.S., Fabrizioli, P., and Baiker, A., J. Catal., 186 (1999) 458.

Gupts, N. M. and Tripathi, A. K., “Microcalorimetry, Adsorption, and Reaction Studies of CO, O2, and CO+O2 over Fe2O3, Au/Fe2O3, and Polycrystalline Gold Catalysts as a Function of Reduction Treatment”, J. Catal. 187, 3(1999) 43

Hammer B. and Norskov J.K., Nature, 376 (1995) 238-239.

Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon B.,
“Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4”, J. Catal., 144, (1993) 175.

Haruta, M., Ueda, A., Tsubota, S., and Torres-Sanchez, R. M., “Low-temperature catalytic combustion of methanol and its decomposed derivatives over supported gold catalysts”, Catal. Today, 29, (1996) 443-447.

Haruta, M., “Size- and support-dependency in the catalysis of gold”, Catal. Today, 36 (1997) 153-166.

Haruta, M., Catal. Surv. Jpn., 1 (1997) 61.

Haruta, M., “Advances in the catalysis of Au nanoparticles”, Appl. Catal. A: General, 222 (2001) 427-437.

Haruta, M., “Nanoparticulate Gold Catalyst for Low-Temperature CO oxidation”, J. New. Electrochem. System., 7 (2004) 163.

Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon, B., “Low-Temperature Oxidation of CO over Gold Supported on TiO2,ά-Fe2O3, and Co3O4”, J. Catal., 144, (1993) 175.

Hoflund, G. B., Gardner, S. D., Schryer, D. R., Upchurch, B. T., Kielin, E. J., “Au/MnOx catalystic performance characteristics for low-temperature carbon monoxide oxidation”, Appl. Catal. B, 6 (1995) 117-126.
Hutchings, G.J., Mirzaei, A.A., Joyner, R.W., Appl. Catal., 166 (1998) 143-152.

Hutchings, G.J., “Gold catalysis in chemical processing”, Catal. Today, 72 (2002) 11-17.

Iizuka, Y., Fujiki, H., Yamauchi, N., Chijiiwa, T., Arai, S., Tsubota, S., and Haruta, M., “Adsorption of CO on gold supported on TiO2”, Catal. Today, 36 (1997) 115-123.

Luengnaruemitchai, A., Osuwan, S., and Gulari, E., “Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts”, Catal. Commun, 4 (2003) 215-221.

Jozsef, L., Margitfalvi, M., Hegedus, A., Szegedi, and Sajo, I., “Modification of Au/MgO catalysts used in low temperature CO oxidation with Mn and Fe”, Appl. Catal. A: General, 272 (2004) 87-97.

Kahlich, M. J., Gasteiger, H. A., Behm, R. J., J. Catal., 171 (1997) 93-105.

Kobayashi, T., Haruta, M., Tsubota, S., Sano, H., Sens. Actuators, 131 (1990) 222.

Kozlov, A.I., Kozlova, A.P., Liu, H., and Iwasawa, Y., “A new approach to active supported Au catalysts”, Appl. Catal. A: General, 182 (1999) 9-28.

Lee, C., Yoom, H. K., Moon, S. H., Yoom, K. J., Korean J. Chem. Eng., 15 (1998) 590-595.

Lee, S. J. and Gavriilidis, A., “Au catalysts supported on anodized aluminum for low-temperature CO oxidation”, Catal. Comm., 3 (2002) 425-428.

Lin, J. N., Chen, J. H., Hsiao, C. Y., Kang, Y. M., and Wan B. Z., “Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation”, Appl. Catal. B: Environ, 36 (2002) 19-29.

Lopez, N., Norskov, J. K., Janssens, T. V. W., Ccalsson, A., Puig-Molina, A., Clausen, B. S., and Grunwaldt, J. D., “The adhesion and shape of nanosized Au particle in a Au/TiO2 catalyst”, J. Catal, 225 (2004) 86-94.

Mallick, K. and Scurrell, M. S., “CO oxidation over gold nanoparticles supported on TiO2 and TiO2-ZnO: catalytic activity effects due to surface modification of TiO2 with ZnO”, Appl. Catal. A: General, 253 (2003) 527-536.

Margiftfalvi, J.L., Fasi, A., Hegedus, M., Lonyi, F., Gobolos, S., Bogdanchikova, N., “Ag/MgO catalysts modified with ascorbic acid for low temperature CO oxidation”, Catal. Today, 72 (2002) 157-169.

Minico, S., Scire, S., Crisafulli, C., and Galvagno, S., “Influence of catalyst pretreatments on volatile organic compounds oxidation over gold/iron oxide”, Appl. Catal. B: Environmental, 34 (2001) 277-285.

Neri, G.., Visco, A. M., Galvagno, S., Donato, A., and Panzalorto, M., “Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization”, Thermochimica Acta, 329 (1999) 39-46.

Okumura, M., “Report of the Research Achievement of Interdisciplinary Basic Research Scetion: No. 393”, Osaka National research Institute, 1999, 6.

Okumura, M., Tsubota, S., and Haruta, M., “Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and H2”, J. Mol. Catal. A: Chemical, 199 (2003) 73-84.

Park, E. D. and Lee, J. S., J. Catal., 186 (1999) 1.

Qi, C., Akita, T., Okumura, M., Kuraoka, K., and Haruta, M., “Effect of surface chemical properties and texture of mesoporous titanosilicate on direct vapor-phase epoxidation of propylene over Au catalysts at high reaction temperature”, Appl. Catal. A; General, 253 (2003) 75-89.

Rosd, M.T. S., Atsushi, U., Koji, T., and Masatake, H., J. Catal., 168 (1997) 125-127.

Ruth, K., Hayes, M., Burch, R., Tsubota, S., and Haruta, M., “The effects of SO2 on the oxidation of CO and propane non supported Pt and Au catalysts”, Appl. Catal. B: Environ, 24 (2000) 133-138.

Su, Y. S., Lee, M. Y., and Lin, S. D., Catal. Lett, 57 (1999) 49.

Tabakova, T., Idakiev, V., Andreeva, D., and Mitov, I., “Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO, Au/Fe2O3-ZrO2 catalysts for the WGS reaction”, Appl. Catal. A: general, 202 (2000) 91-97.

Takaoka, G.. H., Hamano, T., Fukushima, K., Matsuo, J., and Yamada, I., “Preparation and catalytic activity of nano-scale Au islands supported on TiO2”, Nuclear Instru. Method. Phys. Research B, 121 (1997) 503-306.

Valden, M., Lai, X., Goodmam, D. W., “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties”, Science, 281 (1998) 1647-1650.

Visco, A. M., Neri, F., Neri, G.., Donato, A., Milone, C., Galvagno, S., Phys. Chem. Chem. Phys., 1 (1999) 2869.

Wang, G.. Y., Zhang, W. X., Lian, H. L., Jiang, D. Z., and Wu, T. H., “Effect of calcinations temperatures and precipitants on the catalytic performance of Au/ZnO catalysts for CO oxidation at ambient temperature and in humid circumstances”, Appl. Catal. A: General, 239 9 (2003) 1-10.

Wolf A,. and Schuth, F., “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts”, Appl. Catal. A: General, 226 (2002) 1-13.

Zhang ,J., Wang, Y., Chen, B., Li, C., Wu, D., and Wang, X., “Selective oxidation of CO in hydrogen rich gas over platinum-gold catalyst supported on zinc oxide for potential application in fuel cell”, Energy Conversion and Management, 44 (2003) 1805-1815.

Zheng, S. and Gao, L., “Synthesis and characterization of Pt, Au or Pd clusters deposited titania-modified mesoporous silicate MCM-41”, mater. Chem. Phys. 78 (2002) 512-517.

Zanella, R., S. Giorgio, C. R. Henry,and C. Louis, J. Phys. Chem. B, 103 (2002) 7634.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top