(3.80.6.131) 您好!臺灣時間:2021/05/17 01:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:翁維祥
研究生(外文):Wei-Hsiang Weng
論文名稱:溶膠-凝膠法製備有機/無機奈米複合及超疏水材料之研究
論文名稱(外文):Organic/Inorganic Nanocomposite and superhydrophobic Material Synthesized via Sol-Gel Process
指導教授:陳暉陳暉引用關係
指導教授(外文):Hui Chen
學位類別:博士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:189
中文關鍵詞:超疏水複合材料溶膠-凝膠薄膜
外文關鍵詞:Sol-GelComposite MaterialSuperhydrophobicThin Film
相關次數:
  • 被引用被引用:9
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究利用溶膠-凝膠(Sol-Gel)技術分別應用於製備有機/無機奈米複合材料及超疏水薄膜材料。有機/無機奈米複合材料中包含了環氧樹脂/二氧化矽混成材料與聚甲基丙烯酸甲酯(PMMA)/二氧化矽複合粒子等兩部份;而薄膜材料則分為疏水性薄膜材料與超疏水薄膜材料。
環氧樹脂/二氧化矽混成材料中以製備出奈米級混成材料,並提升環氧樹脂之熱穩定性為目的。由結果顯示在一階段合成法中,可在廣範圍的pH條件下製備奈米級混成材料。二階段合成法中,帶有環氧官能基之偶合劑(γ-glycidoxypropyl-methyldiethoxysilane, GPMDES)的添加可使二氧化矽保持於奈米尺寸,並使環氧樹脂與二氧化矽間產生共價鍵結。在相同的二氧化矽添加量下,添加GPMDES之混成材料可得較高的玻璃轉移溫度(Tg)之混成材料,在二氧化矽添加量為10 wt%時,可將環氧樹脂之Tg由80℃提升至113℃。
目前製備PMMA/二氧化矽複合粒子之方式中,需採用合成方式將PMMA表面改質成為帶有正電官能基,或是能夠與TEOS進一步反應之官能基進行複合粒子之製備。本研究利用粒徑為300nm之均一粒徑PMMA做為核物質,並在未經由表面改質之條件下達到製備複合粒子之目的。研究中使用帶有胺基之偶合劑(N-β(aminoethyl)-γ-aminopropyltrimethoxysilane, AAPTMS)與四乙氧基矽烷(TEOS)進行包覆。結果顯示當AAPTMS/TEOS(莫耳比)為1/9及PMMA/SiO2(重量比)為1/2之條件下可以得到400nm大小之PMMA/SiO2複合粒子,而殼層之厚度受到系統中之界面活性劑濃度、AATPMS/TEOS及PMMA/SiO2添加之比例影響,而殼層之厚薄會影響複合粒子之熱穩定性。將PMMA粒子移除後可得到中空之二氧化矽粒子,由結果顯示利用階段性升溫之鍛燒方式可得到結構較為完整之中空粒子。
疏水性薄膜材料之製備方式中,目前文獻上所使用的方式大多分為兩個步驟,第一步驟利用不同的方式製備具粗糙度之表面,在第二步驟中在粗糙之表面塗佈低表面能材質。而在本研究中將採用簡單之一步驟製備方式,利用塗佈方式分別製備出疏水性及超疏水性薄膜材料。
疏水性薄膜材料之製備部份,本研究利用帶有甲基(-CH3)之矽烷化合物(Methyltriethoxysilane, MTES)可在廣泛的條件下製備疏水性薄膜,所得之薄膜硬度為5H且穿透度大於98%。薄膜之平均粗糙度(Ra)隨著反應溫度的提升而變大,但是當反應溫度超過450℃後,薄膜會由於甲基產生熱裂解而由疏水性轉變為親水性。
而針對超疏水薄膜材料之製備,由結果顯示,在低表面能矽烷MTES與二氧化矽粉體添加比例為21.8 wt%下,可得到接觸角為156˚但硬度低於HB之薄膜。而薄膜之硬度可經由添加TEOS而提升,當TEOS/MTES (莫耳比)比例為3.42時,硬度可達3H且接觸角可保持於150˚以上。利用田口工程可分析製備高硬度薄膜或高接觸角薄膜之條件選取,並由實驗結果證實利用田口工程分析可有效得到最佳製備條件。薄膜之透明度則可經由調整塗佈條件,如稀釋塗佈液之濃度或提高旋轉塗佈之轉速而獲得提升,當塗佈液稀釋至1/2且轉速為4000rpm條件下可得到接觸角為158˚且穿透度為76.5%之超疏水薄膜。
In this research, sol-gel process was utilized to fabricate organic/inorganic nano-composite material and superhydrophobic film. Organic/Inorganic composite material included two separate parts, one was Epoxy/SiO2 hybrid material and the other one was PMMA/SiO2 composite sphere. The fabrication of superhydrophobic film also discussed with hydrophobic and superhydrophobic film individually.
Sol-gel process was utilized to synthesize epoxy-silica hybrid materials in nanoscale in recent years. The purpose of this part is to fabricate hybrid material in nanoscale and improve the thermal property of epoxy resin. From these results, the epoxy and silica could hybrid in nanoscale under extensive pH value of the system in one-step process. On the other hand, the two-step process led to a phase separation phenomenon after mixing epoxy resin and precursor without coupling agent γ-glycidoxypropyl-methyldiethoxysilane (GMPDES). GPMDES was utilized to modify the surface properties of the silica via the sol-gel process. The role of the GPMDES is to provide covalent bonding between the epoxy resin and silica and avoid the aggregation of silica. The GPMDES could avoid the phase separation problem of hybrid materials and enhance the thermal stability of the materials through this process. At the same time, the Glass transfer temperature(Tg) of the materials also increased proportionally to the content of silica from 80℃ to 113℃.
In the recent research on fabrication method of composite sphere, the core sphere should be modified the surface property by polymerization method first. In this part, the PMMA/SiO2 composite sphere was synthesized by sol-gel process with the mono-disperse PMMA sphere (300nm) without any surface modify successfully. In this research, the coupling agent with amine group, N-β(aminoethyl)-γ-aminopropyltrimethoxysilane (AAPTMS), was utilized with TEOS to synthesize PMMA/SiO2 composite sphere. From the result, when the mole ratio between AAPTMS/TEOS was 1/9 and the ratio between PMMA and silica was 1/2, the diameter of the composite sphere will be 400nm. The thickness of the silica shell structure influenced with the concentration of surfactant in the system, the ratio of AAPTMS/TEOS and PMMA/Silica in this study. The thickness of the silica shell structure also influenced the thermal stability of the composite sphere. The silica hollow sphere was obtained by removing PMMA sphere by calcinations.
In the research field of superhydrophobic film, the fabricate process should be divided into two steps. First one is the fabrication of roughness of the surface and the second part is coating the low surface energy material. In this research, we expect to fabricate superhydrophobic film by one step.
The film with hydrophobic property could be synthesized with methyltriethoxysilane (MTES) by sol-gel process. The film could fabricate with extensive conditions and exist hydrophobic property. From the results, the hardness of the film could achieve 5H and the transparency of the film was 98%. The average roughness (Ra) increased by raising the reaction temperature. The film will be hydrophilic when the reaction temperature higher than 450℃ due to the decompose of methyl group of the film surface.
The film with superhydrophobic property could be synthesized by MTES and silica powder. From the results, the contact angle higher than 150° when the ratio of SiO2/MTES = 21.8 wt%. Hardness of the film could achieve 3H by adjusting TEOS/MTES mole ratio = 3.42 and contact angle still maintain above 150°. Taguchi Quality Method was used to find the optimum operation conditions in this study. Two of Taguchi Quality Methods were used in this research to find the optimum production conditions for four different fabricate conditions of high contact angle and hardness of superhydrophobic film respectively. In order to fabricate superhydrophobic film of high transparency, the study also explored into the effect of rotation rate of the spin coater and concentration of the coating solution. When the coating solution was diluted to 1/2 and the spin rate at 4000rpm, the film produced possessed continuous roughness layer, the transparency under visible light was 76.5% and contact angle of 158°.
目錄
目錄………………………………………………………………………I
圖索引…………………………………………………………………..VI
表索引…………………………………………………………………..XI
第一章 序論……………………………………………………………..1
1-1奈米材料…………………………………………………………..1
1-2溶膠-凝膠(Sol-Gel)技術…………………………………………..2
1-2-1反應參數對溶膠-凝膠法的影響………………………………..3
1-2-2溶膠-凝膠法之應用……………………………………………..9
1-3研究目的…………………………………………………………12
參考文獻……………………………………………………………..14
第二章 溶膠-凝膠法製備環氧樹脂/二氧化矽混成材料……………..17
2-1前言………………………………………………………………17
2-1-1環氧樹脂……………………………………………………….18
2-1-2環氧樹脂/二氧化矽混成材料…………………………………19
2-1-3溶膠-凝膠法製備環氧樹脂/二氧化矽混成材料之方式……...19
2-1-4研究目的……………………………………………………….26
2-2實驗部份…………………………………………………………28
2-2-1實驗藥品……………………………………………………….28
2-2-2實驗儀器及設備……………………………………………….28
2-2-3環氧樹脂/二氧化矽混成材料之製備…………………………29
2-2-4環氧樹脂/二氧化矽混成材料之測試分析……………………30
2-3結果與討論………………………………………………………31
2-3-1環氧樹脂/二氧化矽混成材料製程條件之探討………………31
2-3-1-1混成材料製備方式對其熱性質及產物外觀之影響………..31
2-3-1-2促進劑之影響………………………………………………..35
2-3-1-3反應溫度對轉化率之影響…………………………………..39
2-3-1-4反應溫度對混成材料熱性質之影響………………………..42
2-3-2合成方式之探討……………………………………………….46
2-3-2-1一階段合成法(one-step process)……………………………47
2-3-2-1-1反應時間之影響…………………………………………..47
2-3-2-1-2二氧化矽添加量之影響…………………………………..47
2-3-2-1-3 pH值之影響………………………………………………50
2-3-2-2二階段合成法(two-step process)……………………………53
2-3-2-2-1 pH值之影響………………………………………………53
2-3-2-2-2偶合劑之添加量之影響…………………………………..56
2-3-2-2-3偶合劑對混成材料外觀之影響…………………………..59
2-3-2-2-4偶合劑對混成材料熱性質之影響………………………..61
2-3-2-3環氧樹脂/二氧化矽混成材料定性分析…………………….63
2-3-2-3-1 FTIR分析………………………………………………….63
2-3-2-3-2 SEM及EDS元素分析……………………………………67
2-4結論………………………………………………………………71
參考文獻……………………………………………………………..73
第三章 溶膠-凝膠法製備核/殼型有機/無機複合粒子……………….75
3-1前言………………………………………………………………75
3-1-1複合粒子之應用性…………………………………………….75
3-1-2複合粒子之製備方式………………………………………….76
3-1-3核/殼型(Core/Shell)複合粒子…………………………………77
3-1-4 PS or PMMA/Silica核/殼型複合粒子之製備………………...79
3-1-5研究目的……………………………………………………….82
3-2實驗部份…………………………………………………………83
3-2-1實驗藥品……………………………………………………….83
3-2-2實驗儀器及設備……………………………………………….83
3-2-3複合粒子之製備……………………………………………….84
3-2-4複合粒子之測試分析………………………………………….85
3-3 結果與討論……………………………………………………...86
3-3-1 PMMA/SiO2複合粒子製備條件之探討……………………...86
3-3-1-1偶合劑(AAPTMS, KBM-603)之影響………………………86
3-3-1-2界面活性劑之影響………………………………………….88
3-3-1-3界面活性劑濃度之影響…………………………………….90
3-3-1-4不同AAPTMS/TEOS添加比例之影響……………………94
3-3-1-5 PMMA/Silica (w/w)添加比例之影響………………………97
3-3-1-6不同Si原料之比較…………………………………………97
3-3-1-7不同官能基偶合劑之影響…………………………………100
3-3-2中空無機粒子之製備………………………………………...100
3-3-3複合粒子之定性測試………………………………………...107
3-3-3-1 DSC分析…………………………………………………...107
3-3-3-2 FTIR分析…………………………………………………..107
3-4結論……………………………………………………………..110
參考文獻……………………………………………………………111
第四章 溶膠-凝膠法製備疏水性薄膜材料………………………….114
4-1前言……………………………………………………………..114
4-1-1楊氏方程式(Young’s Equation)………………………………114
4-1-2低表面能材質………………………………………………...115
4-1-3疏水薄膜之製備……………………………………………...115
4-1-4研究目的……………………………………………………...118
4-2實驗部份………………………………………………………..119
4-2-1實驗藥品……………………………………………………...119
4-2-2實驗儀器及設備……………………………………………...119
4-2-3疏水性薄膜材料製備………………………………………...120
4-2-4疏水性薄膜材料之測試分析………………………………...121
4-3結果與討論……………………………………………………..123
4-3-1偶合劑之影響………………………………………………...123
4-3-2反應系統水含量之影響……………………………………...126
4-3-3反應系統共溶劑添加量之影響……………………………...128
4-3-4反應系統pH值之影響………………………………………128
4-3-5反應時間及溫度之影響……………………………………...130
4-4結論……………………………………………………………..139
參考文獻……………………………………………………………140
第五章 溶膠-凝膠法製備超疏水薄膜材料………………………….142
5-1前言……………………………………………………………..142
5-1-1蓮花效應(Lotus Effect)……………………………………….142
5-1-2超疏水原理及機制…………………………………………...144
5-1-3超疏水現象之數學模式……………………………………...144
5-1-4超疏水薄膜製備方式………………………………………...145
5-1-5研究目的……………………………………………………...152
5-2實驗部份………………………………………………………..153
5-2-1實驗藥品……………………………………………………...153
5-2-2實驗儀器及設備……………………………………………...153
5-2-3超疏水薄膜材料之製備……………………………………...154
5-2-4超疏水薄膜材料之測試分析………………………………...154
5-3結果與討論……………………………………………………..156
5-3-1二氧化矽粉體之影響………………………………………...156
5-3-2薄膜之硬度探討……………………………………………...159
5-3-3田口工程……………………………………………………...163
5-3-3-1田口工程 - I………………………………………………..163
5-3-3-2田口工程 - II……………………………………………….169
5-3-4超疏水薄膜之透明性探討…………………………………...171
5-4結論……………………………………………………………..181
參考文獻……………………………………………………………182
第六章 總結…………………………………………………………..184
已發表論文………………………………………………………………187















List of Figures
Figure 1-1 The pH-dependences of hydrolysis(H), Condensation(C), and dissolution(D) for an arbitrary value of R=1.5(H2O/EtOH)….6
Figure 1-2 Polymerization behavior of silica under different conditions...7
Figure 1-3 The ternary-phase diagram of TEOS, H2O and Synasol(95% EtOH, 5% H2O) at 25℃…………………………………….30
Figure 2-1 The TGA curves of the materials with different hybrid process (a) epoxy resin, (b) epoxy with silica powder (micro scale), (c) sol-gel process………………………………………………33
Figure 2-2 The appearance of hybrid materials with different hybrid
process (a) epoxy resin, (b) epoxy with silica powder (micro scale), (c) sol-gel process…………………………………...34
Figure 2-3 DSC curves of epoxy resin varnish (a) sample A1, (b) sample A2…………………………………………………………...37
Figure 2-4 DSC curves of epoxy/SiO2 hybrid varnish with different amount of 2-MI (a) sample B1, (b) sample B2, (c) sample B3…………………………………………………………...38
Figure 2-5 DSC curves of epoxy/SiO2 hybrid varnish at different temperature by isothermal mode……………………………40
Figure 2-6 The conversion of epoxy/SiO2 hybrid materials reacted at different temperature (a)130℃, (b)140℃, (c)150℃, (d)160℃, (e)170℃, (f)180℃, (g)190℃……………………………….44
Figure 2-7 The TGA results of the hybrid materials prepared with one-step process under the same condition, the pH value of the system is 2 and the solid content is 10%, (a) reaction time=2 hours (b) reaction time=2 days (c) pure epoxy resin………..48
Figure 2-8 The TGA results of the hybrid materials with different content of inorganic component in one-step process under the condition, the pH value of the system is 2 and the reaction time is 2 days, (a) 1% (b) 2.5% (c) 5% (d) 10% (e) pure epoxy………………………………………………………..49
Figure 2-9 The TGA results of the hybrid materials with different pH value in one-step process under the condition, the solid content is 10% and the reaction time is 2 days, (a) pH=2 (b) pH=4 (c) pH=6 (d) pH=8 (e) pH=10 (f) pure epoxy resin….51
Figure 2-10 The TGA results of the hybrid materials with different process (a) one-step process, reacted for 2 days (b) two-step process, without coupling agent (c) pure epoxy resin………53
Figure 2-11 The TGA curves of Epoxy/SiO2 hybrid materials with different amount of coupling agent (a) pure epoxy resin (b) without coupling agent (c) 1% (d) 2.5% (e) 5% (f) 10%…...58
Figure 2-12 The appearance of the products with Two-step process (a) epoxy resin (b) pH=2, without coupling agent (c) pH=2, with coupling agent (d) pH=10, without coupling agent (e) pH=10, with coupling agent…………………………………………60
Figure 2-13 The TGA results of the hybrid materials prepared with two-step process under the same conditions, the pH value of the system is 2 and the solid content is 10%, (a) without coupling agent (b) with coupling agent (c) pure epoxy resin…………………………………………………………62
Figure 2-14 DSC thermograms of epoxy/silica hybrid materials obtained from Two-step process with coupling agent, pH=2 with different inorganic content (a) epoxy resin (b) 1% (c) 2.5% (e) 5% (f) 10%………………………………………………….65
Figure 2-15 IR spectra of epoxy/SiO2 hybrid materials with different amount of SiO2 (a) epoxy resin (b) 2.5 wt% (c) 5 wt% (d) 10 wt%………………………………………………………….66
Figure 2-16 The SEM and SEM-EDS results of epoxy resin (a) SEM morphology (b) the elements of epoxy resin………………..68
Figure 2-17 The SEM and SEM-EDS results of epoxy/SiO2 hybrid material (a) SEM morphology (b) the elements of hybrid material……………………………………………………...69
Figure 2-18 The Si mapping of epoxy/SiO2 hybrid material (a) SEM (b) Si mapping…………………………………………………..70
Figure 3-1 The TGA results of (a) PMMA sphere, and the PMMA/SiO2 composite sphere prepared with (b) AAPTMS and TEOS (c) TEOS only…………………………………………………..87
Figure 3-2 The TGA results of (a) PMMA sphere, and PMMA/SiO2 composite sphere synthesized with different surfactant (b) X-100 (c) SDS (d) CTAB…………………………………...89
Figure 3-3 The TGA results of (a) PMMA sphere, and PMMA/SiO2 composite sphere synthesized with different concentration of surfactant SDS (b) 1x10-2M (c) 2x10-2M (d) 4x10-2M……...92
Figure 3-4 The morphology of the PMMA/SiO2 composite sphere synthesized with different concentration of surfactant SDS (a) 1x10-2M (b) 2x10-2M (c) 4x10-2M…………………………..93
Figure 3-5 The TGA results of (a) PMMA sphere, and PMMA/SiO2 composite sphere synthesized with different mole ratio of AAPTMS /TEOS (A/T) (b) 0/10 (c) 1/9 (d) 3/7 (e) 5/5 (f) 9/1…………………………………………………………...95
Figure 3-6 The morphology of the PMMA/SiO2 composite sphere synthesized with different mole ratio of AAPTMS /TEOS (A/T) (a) 1/9 (b) 3/7 (c) 5/5 (d) 9/1…………………………96
Figure 3-7 The TGA results of (a) PMMA sphere, and PMMA/SiO2 composite sphere synthesized with different ratio between PMMA and SiO2 (w/w) (b) 1/2 (c) 1/1.67 (d) 1/1.33 (e) 1/1 (f) 2/1…………………………………………………………...98
Figure 3-8 The morphology of the PMMA/SiO2 composite sphere synthesized with different ratio between PMMA and SiO2 (w/w) (a) 1/2 (b) 1/1 (c) 2/1…………………………………99
Figure 3-9 The TGA results of (a) PMMA sphere, and PMMA/SiO2 composite sphere synthesized with different silica source (b) TEOS (c) TEOS and AAPTMS (d) TMOS (e) TMOS and AAPTMS…………………………………………………..101
Figure 3-10 The TGA results of (a) PMMA sphere, and PMMA/SiO2 composite sphere synthesized with SDS and different coupling agent (b) AAPTMS (c) DTMS…………………………….102
Figure 3-11 The morphology of the (a) composite sphere, and (b) hollow silica sphere by calcination (raise temperature immediately)……………………………………………….104
Figure 3-12 The morphology of the hollow silica sphere with different removed PMMA process (a) calcination (raise temperature step by step) (b) extraction………………………………...105
Figure 3-13 The TGA curves of (a) PMMA, (b) composite sphere, and the hollow sphere removed PMMA by different process (c) calcination (d) extraction…………………………………..106
Figure 3-14 The DSC curve of (a) PMMA, (b) composite sphere…….108
Figure 3-15 The FTIR spectra of (a) PMMA (b) composite sphere (c) hollow sphere………………………………………………109
Figure 4-1 The structural formula of TEOS and coupling agent………124
Figure 4-2 The relationship between the contact angle and the calcination temperature of the film prepared with different calcination time (■) 0.5 hour, (●) 1 hour, (▲) 2 hours………………...132
Figure 4-3 TGA curves of films after reacted at different temperature for 1hr (a)100℃ (b) 200℃ (c) 400℃ (d) 500℃…………….134
Figure 4-4 FTIR spectra of films after reacted at different temperature for 2hr (a)100℃ (b) 400℃ (c) 500℃………………………..135
Figure 4-5 AFM photographs of films prepared at different reaction temperature for one hour (a)100℃ (b)400℃ (c)450℃…..137
Figure 5-1 The morphology of the lotus leaf surface observed by SEM (a)Cuticula (b)Wax Crystal………………………………...143
Figure 5-2 (a) Wenzel’s theory (b) Cassie’s theory……………………146
Figure 5-3 The relationship between Roughness and Contact angle…..146
Figure 5-4 Surface morphology of superhydrophobic film by different amount of SiO2 powder (a) 2.4% (b) 14.6% (c) 21.8%……158
Figure 5-5 The images of water droplet on the glass by different conditions (a) Glass without coating (b) A-1 (c) A-5……...160
Figure 5-6 The comparison of the S/N ratio for high contact angle film using various parameters in Taguchi method I…………….167
Figure 5-7 The comparison of the S/N ratio for high hardness film using various parameters in Taguchi method I…………………..168
Figure 5-8 The comparison of the S/N ratio for high contact angle film using various parameters in Taguchi method II……………174
Figure 5-9 The comparison of the S/N ratio for high hardness film using various parameters in Taguchi method II………………….175
Figure 5-10 The morphology of the film with different diluted concentration of coating solution (a) Original (b) 1/2 (c) 1/6 (d) 1/10………………………………………………………...179
Figure 5-11 The surface morphology and the contact angle of sample F-6 (a) SEM (b) AFM (c) Digital image……………………….180



List of Tables
Table 1-1 The rate constant K for acid hydrolysis of (a)Tetraalkoxysilanes and (b)Alkoxyethoxysilanes at 20℃…………………………..4
Table 2-1 Preparation conditions of Epoxy and Epoxy/SiO2 hybrid varnish………………………………………………………..36
Table 2-2 The thermal results of Epoxy/SiO2 hybrid varnish measured by DSC…………………………………………………………..41
Table 2-3 The conversion of Epoxy/SiO2 hybrid varnish measured by DSC…………………………………………………………..43
Table 2-4 The TGA results of Epoxy/SiO2 hybrid materials……………45
Table 2-5 The appearance of the hybrid materials prepared with different pH value in one-step process…………………………………52
Table 2-6 The appearance of the hybrid materials prepared with different pH value in two-step process…………………………………55
Table 2-7 Preparation conditions and the appearance of Epoxy/SiO2 hybrid materials with different amount of coupling agent GPMDES……………………………………………………..57
Table 2-8 The Tg of the hybrid materials in two-step process…………..64
Table 4-1 The surface energy of different functional group…………...116
Table 4-2 Preparation condition and contact angle of thin films prepared by TEOS and different coupling agent……………………...125
Table 4-3 Contact angle of hydrophobic films by different amount of H2O………………………………………………………….127
Table 4-4 Contact angle of hydrophobic films by different amount of ethanol………………………………………………………129
Table 4-5 Contact angle of hydrophobic films by different pH value…131
Table 4-6 Transparency and hardness of films by various reaction time and reaction temperature……………………………………138
Table 5-1 Preparation conditions and contact angle of thin films synthesized with varies amount of SiO2 Powder……………157
Table 5-2 Preparation conditions and characteristics of superhydrophobic films by adjusting TEOS/MTES…………………………….162
Table 5-3 Experimental Layout using the L9 orthogonal array for Taguchi Method I…………………………………………………….164
Table 5-4 Parameters and their levels of superhydrophoic film fabrication for Taguchi experiment I……………………………………165
Table 5-5 The contact angle and hardness of the film experiment by Taguchi method I……………………………………………166
Table 5-6 The experiment results with the optimum operation condition of Taguchi method I…………………………………………170
Table 5-7 Parameters and their levels of superhydrophoic film fabrication for Taguchi experiment II…………………………………...172
Table 5-8 The contact angle and hardness of the film experiment by Taguchi method II…………………………………………...173
Table 5-9 The experiment results with the optimum operation condition of Taguchi method II………………………………………..176
Table 5-10 Conditions and the characteristics of the film fabricated by adjusting the concentration of the solution and the spin rate…………………………………………………………..178
第一章
[1] 馬振基, “奈米材料科技原理及應用”, 全華科技圖書, 2003.
[2] C. J. Brinker, G. W. Scherer, Sol-gel science:the physics and chemistry of sol-gel processing, Academic Press, Boston, 1990.
[3] J. J. Ebelmen, Ann. Chim. Phys., 1846, 16, 129.
[4] H. Dislich, Angew. Chem., 1971, 10, 363.
[5] G. S. Sur, J. E. Mark, Eur. Polym. J., 1985, 21, 1051.
[6] S. J. Clarson, J. E. Mark, Polym. Commun., 1987, 28, 249.
[7] H. J. L. Samuelson, L. L. Kumar, J. S. Tripathy, Adv. Mater., 1999, 11, 435.
[8] Y. Takahashi, A. Maeda, K. Kojima, K. Uchida, Luminescence, 2000, 87, 767.
[9] S. H. Jang, M. G. Han, S. S. Im, Synth. Met., 2000, 17, 110.
[10] T. C. Chang, Y. T. Wang, Y. S. Hong, H. B. Chen, J. C. Yang, Polym. Degradation Stab., 2000, 69, 317.
[11] M. Yoshida, P. N. Prasad, Appl. Opt., 1996, 35, 1500.
[12] R. Aelion, A. Loebel, F. Eirich, J. Am. Chem. Soc., 1950, 72, 124.
[13] B. E. Yoldas, J. Mater. Sci., 1979, 14, 1843.
[14] M. Nogami, Y. Moriya, J. Non-Cryst. Solids, 1980, 37, 191.
[15] L. C. Klein, G. J. Garvey, J. Non-Cryst. Solids, 1980, 38, 39.
[16] S. P. Makherju, J. Non-Cryst. Solids, 1980, 42, 477.
[17] D. P. Partlow, B. E. Yoldas, J. Non-Cryst. Solids, 1981, 46, 153.
[18] B. E. Yoldas, J. Non-Cryst. Solids, 1982, 51, 105.
[19] Y. Paoting, L. Hsiaoming, W. Yuguang, J. Non-Cryst. Solids, 1982, 52, 511.
[20] E. J. A. Pope, J. D. Mackenzie, J. Non-Crystalline Solids, 1986, 87, 185.
[21] T. W. Zerda, I. Artaki, J. Jonas, J. Non-Crystalline Solids, 1986, 81, 365.
[22] B. Himmel, T. Gerber, H. Burger, J. Non-Crystalline Solids, 1987, 91, 122.
[23] M. G. Voronkov, V. P. Mileshkevich, Y. A. Yuzhelevski, The Siloxane Bond, Consultants Bureau, New York, 1978.
[24] R. Aelion, A. Loebel, F. Eirich, J. Am. Chem. Soc., 1950, 72, 5705.
[25] R. A. Assink, B. D. Kay, J. Non-Cryst. Solids, 1988, 88, 359.
[26] R. K. Iler, The Chemistry of Silica, Wiley, New York, 1979.
[27] L. S. Dent-Glasser, E. E. Lachowski, J. Chem. Soc. Dalton Trans., 1980, 393, 399.
[28] D. Avnir, V. R. Kaufman, J. Non-Cryst. Solids, 1987, 192, 180.
[29] R. Y. Sheinfain, O. P. Stas, T. F. Makovskaya, Koll. Zh., 1972, 34, 869.
[30] H. D. Cogan, C. A. Setterstrom, Chem. And Eng. News, 1946, 192, 180.
[31] C. J. Brinker, K. D. Keefer, D. W. Schaefer, C. S. Ashley, J. Non-Cryst. Solids, 1982, 48, 47.
[32] W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci., 1968, 26, 62.
[33] S. Sakka, K. Kamiya, K. Makita, Y. Yamamoto, J. Non-Cryst. Solids, 1984, 63, 223.
[34] C. J. Brinker, K. D. Keefer, R. A. Assink, B. D. Kay, C. S. Ashley, J. Non-Cryst. Solids, 1984, 63, 45.
[35] G. Orcel, L. Hench, J. Non-Cryst. Solids, 1986, 79, 177.
[36] T. Adachi, S. Sakka, J. Non-Cryst. Solids, 1988, 99, 118.
[37] T. Adachi, S. Sakka, M. Okada, Y. K. Shi, J. Non-Cryst. Solids, 1987, 95, 970.
[38] T. Adachi, S. Sakka, J. Non-Cryst. Solids, 1988, 100, 250.
[39] I. Artaki, T. W. Zerda, J. Jonas, J. Non-Cryst. Solids, 1986, 81, 381.
[40] D. R. Ulruch, Ceramic Bull., 1985, 64, 1444.
[41] D. A. Loy, K. J. Shea, Chem. Rev., 1995, 95, 1431.
[42] B. M. Novak, Adv. Mater., 1993, 5, 422.
[43] G. Philipp, H. Schmidt, J. Non-Cryst. Solids, 1984, 63, 283.
[44] R. J. R. Uhlhorn, K. Keizer, A. J. Burggraaf, J. Membrane Sci., 1992, 66, 271.
[45] K. Nakanishi, H. Minakuchi, N. Soga, J. Sol-Gel Sci. Technol., 1997, 8, 547.
[46] D. R. Uhlmann, T. Suratwala, K. Davidson, J. M. Boulton, G. Teowee, J. Non-Cryst. Solids, 1997, 218, 113.
[47] D. R. Uhlmann, G. P. Rajendran, SPIE Proc., 1990, 1328, 270.
[48] B. E. Yoldas, J. Sol-Gel Sci. Technol., 1993, 1, 65.
[49] J. Y. Ying, C. P. Mehnert, M. S. Wong, Angew. Chem. Int. Ed. Engl., 1999, 38, 56.
[50] A. Corma, Chem. Rev., 1997, 97, 2373.
[51] P. T. Tanev, M. Chibwe, T. J. Pinnavaia, Nature, 1994, 368, 321.
[52] S. Krijnen, H. C. L. abbenhuis, R. W. J. Hansen, J. H. C. van Hooff, R. A. van Santen, Angew. Chem. Int. Ed. Engl., 1998, 37, 356.

第二章
[1] S. S. Hou, Y. P. Chung, C. K. Chan, P. L. Kuo, Polymer, 2000, 41, 3263.
[2] C.H. Lin, C.S. Wang, Polymer, 2001, 42, 1869.
[4] G. S. Sur, J. E. Mark, Eur. Polym. J., 1985, 21, 1051.
[5] J. E. Mark, G. S. Sur, Polym. Bull., 1985, 14, 325.
[6] S. J. Clarson, J. E. Mark, Polym. Commun., 1987, 28, 249.
[7] P. Castan, CIBA Co., Swiss.21116, 1937
[8] P. Castan, CIBA CO., Brit.518057, 1937
[9] P. Castan, CIBA CO., U.S.2324483, 1937
[10] P. Castan, CIBA CO., U.S.2444333, 1937
[11] O. Greenlee, Devoe & Raynolds Co., U.S.2493486, 1939
[12] O. Greenlee, Devoe & Raynolds Co., U.S.2521911, 1939
[13] D. A. Rogers, Westinghouse Electric Co., U.S.2883395, 1959
[14] G. H Hsiue, W. J. Wang, F. C. Chang, J. Appl. Polym. Sci., 1999, 73, 1231.
[15] W. J. Wang, L. H. Perng, G. H. Hsiue, F. C. Chang, Polymer, 2000, 41, 6113.
[16] C. L. Chiang, F. Y. Wang, C. C. M. Ma, H. R. Chang, 2002, Polym. Degradation Stab., 2002, 77, 273.
[17] C. L. Chiang, C. C. M. Ma, Eur. Polym. J., 2002, 38, 2219.
[18] C. S. Wu, Y. L. Liu, Y. C. Chiu, Y. S. Chiu, Polym. Degradation Stab., 2002, 78, 41.
[19] C. S. Wu, Y. L. Liu, Y. S. Chiu, Polymer, 2002, 43, 4277.
[20] Y. M. Yang, C. H. Shih, C. N. Chang, F. H. Lin, J. M. Jiang, Y. G. Hsu, W. Y. Su, L. C. See, J. Biomed. Mater. Res. Part A, 2003, 64A, 138.
[21] Y. L. Liu, C. S. Wu, Y. S. Chiu, W. H. Ho, J. Polym. Sci., A, Polym. Chem., 2003, 41, 2354.
[22] C. S. Wu, Y. L. Liu, J. Polym. Sci., A, Polym. Chem., 2004, 42, 1868.
[23] S. T. Kang, S. I. Hong, C. R. choe, M. Park, S. H. Rim, J. Y. Kim, Polymer, 2001, 42, 879.
[24] K. J. Shea, D. A. Loy, Chem. Mater., 2001, 13, 3306.
[25] R. H. Baney, M. Itoh, A. Sakakibara, T. Suzuki, Chem. Rev., 1995, 95, 1409.
[26] J. W. Choi, J. Harcup, A. F. Yee, Q. Zhu, R. M. Laine, J. Am. Chem. Soc., 2001, 123, 11420.
[27] J. W. Choi, S. G. Kim, R. M. Laine, Macromolecules, 2004, 37, 99.
[28] L. Matĕjka, L. Dušek, J. Pleštil, J. Kříž, F. Lednický, Polymer, 1998, 40, 171.
[29] L. Matĕjka, J. Pleštil, K. Dušek, J. Non-Cryst. Solids, 1998, 226, 114.
[30] L. Matĕjka, O. Dukh, J. Kolařík, Polymer, 2000, 41, 1449.
[31] G. H. Hsiue, Y. L. Liu, H. H. Liao, J. Polym. Sci., A, Polym. Chem., 2001, 39, 986.
[32] H. Y. Wang, Y. L. Bai, S. Liu, J. L. Wu, C. P. Wong, Acta Mater., 2002, 50, 4369.
[33] S. R. Davis, A. R. Brough, A. Atkinson, J. Non-Cryst. Solids, 2003, 315, 197.
[34] J. Macan, H. Ivankovic, M. Ivankovic, H. J. Mencer, J. Appl. Polym. Sci., 2004, 92, 498.

第三章
[1] F. Caruso, Adv. Mater., 2001, 13, 11.
[2] R. A. Caruso, M. Antonietti, Chem. Mater., 2001, 13, 3271.
[3] F. Caruso, Chem. Eur. J., 2000, 6, 413.
[4] K. J. Pekarek, J. S. Jacob, E. Mathiowitz, Nature, 1994, 367, 258.
[5] J. G. Liu, D. L. Wilcox, J. Mater. Res., 1994, 10, 84.
[6] D. C. Blackley, Polymer Latices: Science and Technology, 2nd ed., Vol. 2, Chapman and Hall, London 1997.
[7] R. H. Ottewill, A. B. Schofield, J. A. Waters, N. S. J. Williams, Colloid Polym. Sci., 1997, 275, 274.
[8] S. M. Marinakos, J. P. Novak, L. C. Brousseau, A. B. House, E. M. Edeki, J. C. Feldhaus, D. L. Feldheim, J. Am. Chem. Soc., 1999, 121, 8518.
[9] L. Quaroni, G. Chumanov, J. Am. Chem. Soc., 1999, 121, 10 642.
[10] L. M. Liz-Marzán, M. Giersig, P. Mulvaney, Langmuir, 1996, 12, 4329.
[11] M. Giersig, L. M. Liz-Marzán, T. Ung, D. S. Su, P. Mulvaney, Ber. Bunsenges. Phys. Chem., 1997, 101, 1617.
[12] M. Giersig, T. Ung, L. M. Liz-Marzán, P. Mulvaney, Adv. Mater., 1997, 9, 570.
[13] M. A. Correa-Duarte, M. Giersig, L. M. Liz-Marzan, Chem. Phys. Lett., 1998, 286, 497.
[14] W. P. Hsu, R. Yu, E. Matijević, J. Colloid Interface Sci., 1993, 156, 56.
[15] S. Srinivasan, A. K. Datye, A. M. Hampden-Smith, I. E. Wachs, G. Deo, J. M. Jehng, A. M. Turek, C. H. F. Peden, J. Catal. 1991, 131, 260.
[16] A. Hanprasopwattana, S. Srinivasan, A. G. Sault, A. K. Datye, Langmuir, 1996, 12, 3173.
[17] X. C. Guo, P. Dong, Langmuir, 1999, 15, 5535.
[18] J. N. Ryan, M. Elimelech, J. L. Baeseman, R. D. Magelky, Environ. Sci. Technol., 2000, 34, 2000.
[19] G. Wang, A. Harrison, J. Colloid Interface Sci., 1999, 217, 203.
[20] F. Caruso, E. Donath, H. Möhwald, J. Phys. Chem. B, 1998, 102, 2011.
[21] G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, H. Möhwald, Colloids Surf. A: Physicochem. Eng. Aspects, 1998, 137, 253.
[22] F. Caruso, H. Lichtenfeld, E. Donath, H. Möhwald, Macromolecules, 1999, 32, 2317.
[23] F. Caruso, C. Schüler, D. G. Kurth, Chem. Mater., 1999, 11, 3394.
[24] G. Decher, J. D. Hong, Ber. Bunsenges. Phys. Chem., 1991, 95, 1430.
[25] N. Kawahashi, E. Matijević, J. Colloid Interface Sci., 1990, 138, 534.
[26] N. Kawahashi, C. Persson, E. Matijević, J. Mater. Chem., 1991, 1, 577.
[27] H. Shiho, N. Kawahashi, Colloid Polym. Sci., 2000, 278, 270.
[28] H. Bamnolker, B. Nitzan, S. Gura, S. Margel, J. Mater. Sci. Lett., 1997, 16, 1412.
[29] F. Caruso, R. A. Caruso, H. Möhwald, Chem. Mater., 1999, 11, 3309.
[30] R. A. Caruso, A. Susha, F. Caruso, Chem. Mater., 2001, 13, 400.
[31] V. Valtchev, Chem. Mater., 2002, 14, 4371.
[32] Z. W. Niu, Z. H. Yang, Z. B. Hu, Y. F. Lu, C. C. Han, Adv. Funct. Mater., 2003, 13, 949.
[33] I. Tissot, J. P. Reymond, F. Lefebvre, E. Bourgeat-Lami, Chem. Mater., 2002, 14, 1325.
[34] X. F. Ding, Y. Q. Jiang, K. F. Yu, N. N. Tao, J. Z. Zhao, Z. C. Wang, Mater. Lett., 2004, 58, 1722.
[35] X. F. Ding, K. F. Yu, Y. Q. Jiang, H. B. Zhang, Z. C. Wang, Mater. Lett., 2004, 58, 3618.
[36] J. J. L. M. Cornelissen, E. F. Connor, H. C. Kim, V. Y. Lee, T. Magibitang, P. M. Rice, W. Volksen, L. K. Sundberg, R. D. Miller, Chem. Commun., 2003, 1010.
[37] Y. Lu, J. McLellan, Y. N. Xia, Langmuir, 2004, 20, 3464.

第四章
[1] K. Izumi, H. Tanaka, M. Murakami, T. Deguchi, A. Morita, N. Toge, T. Minami, J. Non-cryst. solids., 1993, 121, 344.
[2] H. Tada, H. Nagayama, Langmuir, 1990, 11, 136.
[3] K. Tadanaga, N. Katata, T. Minami, J. Am. Ceram. Soc., 1997, 80, 1040.
[4] T. Wydeven, R. Kubacki, Appl. Opt., 1976, 15, 132.
[5] T. Goto, J. Chen, T. Wakida, Chem. Express, 1991, 6, 711.
[6] M. Kogoma, H. Kasai, K. Takahashi, T. Moriwaki, S. Okazaki, J. Phys. D: Appl. Phys., 1987, 20, 147.
[7] R.H. Hopkins, Appl. Opt., 1975, 14, 2831.
[8] Y. Takada, M. Soga, K. Ogawa, S. Ozaki, Polym. Prepr. Jpn., 1993, 42, 1719.
[9] T. Young, Trans. R. Soc. London, 1805, 95, 65.
[10] S. J. Clarson, J. A. Semlyen, Siloxane Polymers, Prentice Hall, New Jersey, 1993.
[11] K. Kamitani, H. Yamamoto, Nippon Sheet Glass Co., U.S.6623863, 2003
[12] I. Kamura, S. Yamazaki, Central Glass Company, U.S.5413865, 1995
[13] T. Nakagawa, M. Soga, J. Non-cryst. solids., 1999, 260, 167.
[14] A. Hozumi, K. Ushiyama, H. Sugimura, O. Takai, Langmuir, 1999, 15, 7600.
[15] A. Y. Fadeev, T. J. McCarthy, Langmuir, 1999, 15, 3759.
[16] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda, Langmuir, 1999, 15, 4321.
[17] B. S. Hong, J. H. Han, S. T. Kim, Y. J. Cho, M. S. Park, T. Dolukhanyan, C. Sung, Thin Solid Films, 1999, 351, 274.
[18] H. J. Jeong, D. K. Kim, S. B. Lee, S. H. Kwon, K. Kadono, J. colloid interface sci., 2001, 235, 130.
[19] T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Langmuir, 1996, 12, 2125.

第五章
[1] C. Neinhuis, W. Barthlott, Ann. bot., 1997, 79, 667.
[2] R. N. Wenzel, Ind. Eng. Chem., 1936, 28, 988.
[3] A. B. D. Cassie, S. Baxter, Trans. Faraday Soc., 1944, 40, 546.
[4] T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Langmuir, 1996, 12, 2125.
[5] J. P. Youngblood, T. J. McCarthy, Macromolecules, 1999, 32, 6800.
[6] K. Teshima, H. Sugimura, Y. Inoue, O. Takai, A. Takano, Langmuir, 2003, 19, 10624.
[7] J. Y. Shiu, C. W. Kuo, P. L. Chen, C. Y. Mou, Chem. mater., 2004, 16, 561.
[8] Y. Y. Wu, H. Sugimura, T. Inoue, O. Takai, Chem. Vap. Deposition, 2002, 8, 47.
[9] M. Li, J. Zhai, H. Liu, Y. L. Song, L. Jiang, D. B. Zhu, J. Phys, Chem. B, 2003, 107, 9954.
[10] K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Miline, G. H. McKinley, K. K. Gleason, Nano Letters, 2003, 3, 1701.
[11] H. Liu, L. Feng, J. Zhai, L. Jiang, D. B. Zhu, Langmuir, 2004, 20, 5629.
[12] L. Feng, S. H. Li, H. J. Li, J. Zhai, T. L. Song, L. Jiang, D. B. Zhu, Angew. Chem. Int. Ed., 2002, 41, 1221.
[13] H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang, D. B. Zhu, Angew. Chem. Int. Ed., 2001, 113, 1793.
[14] L. Feng, Y. L. Song, J. Zhai, B. Liu, J. Xu, L. Jiang, D. B. Zhu, Angew. Chem. Int. Ed., 2003, 42, 800.
[15] L. Feng, Z. L. Yang, J. Zhai, Y. L. Song, B. Liu, Y. M. Ma, Z. H. Yang, L. Jiang, D. B. Zhu, Angew. Chem. Int. Ed., 2003, 42, 4217.
[16] A. V. Rao, M. M. Kulkarni, Mater. Res. Bull., 2002, 37, 1667.
[17] A. V. Rao, M. M. Kulkarni. D. P. Amalnerkar, T. Seth, J. Non-cryst. solids., 2003, 330, 187.
[18] K. Tadanaga, J. Morinaga, A. Matsuda, T. Minami, Chem. Mater., 2000, 12, 590.
[19] K. Tadanaga, J. Morinaga, T. Minami, J. Sol-Gel Sci. Technol., 2000, 19. 211.
[20] K. Tadanaga, K. Kitamuro, A. Matsuda, T. Minami, J. Sol-Gel Sci. Technol., 2003, 26, 705.
[21] A. Nakajima, K. Abe, K. Hashimoto, T. Watanabe, Thin Solid Films, 2000, 376, 140.
[22] D. Öner, T. J. McCarthy, Langmuir, 2000, 16, 7777.
[23] A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Adv. Mater., 1999, 11, 1365.
[24] M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Langmuir, 2000, 16, 5754.
[25] A. Nakajima, K. Hashimoto, T. Watanabe, Langmuir, 2000, 16, 7044.
[26] S. Shibuichi, T. Onda, N. Satoh, K. Tsujii, J. Phys. Chem., 1996, 100, 19512.
[27] D. H. Jung, I. J. Park, Y. K. Choi, S. B. Lee, H. S. Park, J. Rühe, Langmuir, 2002, 18, 6133.
[28] J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, G. M. Whitesides, Nono Letters, 2002, 2, 891.
[29] Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, O. Sato, Angew. Chem. Int. Ed., 2003, 42, 894.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊