(3.238.130.97) 您好!臺灣時間:2021/05/10 13:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳東明
研究生(外文):Dong-Ming Wu
論文名稱:中孔徑矽分子篩與微孔徑碳分子篩使用於VOC線上濃縮之吸附性比較
指導教授:王家麟王家麟引用關係
指導教授(外文):Jia-Lin Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:104
外文關鍵詞:thermal desorptionmesoporousmicroporousmolecular sieve
相關次數:
  • 被引用被引用:12
  • 點閱點閱:356
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:1
本實驗以中孔徑矽分子篩MCM-41、MCM-48與SBA-15作為空氣樣品中VOCs(Volatile Organic Compounds)的吸附材料,作為氣相層析儀線上濃縮單元,測試其吸附捕捉的特性,並以商業化微孔徑碳分子篩與之比較。
以一內含56種VOC標準氣體,作為提供中孔徑矽分子篩與微孔徑碳分子篩進行吸脫附行為之參考;此標準氣體混合物內所含的物種分子大小範圍為C2-C12。作為線上吸附劑捕捉分析後,微孔徑多重床碳吸附劑涵蓋了C3到C12,表現出相當一致性的吸附效率。然而中孔徑矽骨幹的MCM-41等則對於C3到C5的輕碳數VOCs具有微量的吸附效率,但對於C7的物種吸附效率開始提高,且由C8到C12的範圍到達接近碳分子篩理想的吸附效率。MCM-41平均孔徑大小約為46.6 �痋A此孔徑特徵反應在其層析圖譜之中,具有對分子大小的選擇性,並在再現性及線性的討論中表現出確實捕捉分子的範圍。而脫附溫度曲線圖之中,中孔徑矽分子篩MCM-41等在約160 �aC即脫附完全,較多床重碳吸附劑的250 �aC或以上低許多,另二種中孔徑矽分子篩MCM-48(孔徑約25.78 ��)與SBA-15(孔徑約64.79 ��)也有類似的表現,皆顯出中孔徑矽分子篩在層析用途中,作為濃縮空氣VOC的吸附劑具有良好的發展性。
Three mesoporous silica MCM-41, MCM-48, and SBA-15 with pore size of 46.6, 25.78, 64.79 �� were synthesized and assessed for its applicability as sorbents for on-line trapping of volatile organic compounds (VOCs) from air samples. Several commercially available microporous carbon molecular sieves, i.e., Carbosieve SIII, Carboxen 1000, Carboxen 1003, and Carbotrap purchased from Supelco, were employed to form multi-sorbent traps as a reference for comparing adsorption properties with those of the silica MCM-41. A standard gas mixture containing more than 50 target compounds with size varying from C2 to C12 was adsorbed by these sorbents to obtain the relationship between pore size and adsorption profiles. While the multi-carbon sorbents show very uniform adsorption ability across the entire carbon range from C3-C12, the mesoporous silica MCM-41, -48, and SBA-15, however, shows little sorption for smaller molecules from C3 to C7, but exhibit adequate sorption ability for C8 – C12 compounds. Desorption at various temperatures indicates that C8 – C12 compounds once trapped can be easily released at moderate temperatures of about 150 �aC, whereas for carbon sorbents the desorption temperatures for sufficient recovery need to go beyond 250 �aC due to much tighter hold-up in the microporous structure. Sorption ability for mesoporous silica is also reflected on linearity. Compounds with linearity (R2) close to unity also exhibit excellent precision of better than 4% RSD, an important requirement for quantitative analysis of ambient VOCs.
It was found that pressure also affects adsorption efficiency. Higher pressure facilitates adsorption, and such an increase in adsorption is more dramatic for lighter VOCs than for heavier ones since the head room of increase for heavier VOCs is already small.
Even though the pore size of SBA-15 is large (64.79 ��), adsorption ability for light VOCs (C3-C8) was much more obvious than with MCM-41 and -48. It was speculated that existence of smaller side tunnels in the SBA-15 structure was the cause for adsorbing smaller VOC molecules.
目 錄
中文摘要 I
英文摘要 II
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 前言 1
1-1 平流層臭氧的破壞 2
1-2光煙霧 6
1-3 空氣中毒性化學物質 11
1-4 揮發性有機物之採樣與分析 14
1-5 研究目的 18
第二章 文獻回顧 20
2-1 研究背景 20
2-1.1活性碳吸附劑 21
2-1.2石墨炭黑吸附劑 22
2-1.3多孔聚合物吸附劑 23
2-1.4碳分子篩吸附劑 24
2-2中孔洞分子篩的發展背景 25
第三章 實驗原理與系統介紹 36
3-1 研究方法 37
3-2 吸附管的製作 38
3-3中孔洞分子篩吸附管之製備 43
3-4以Heart-cut技術為核心的前濃縮系統介紹 44
第四章 實驗結果與討論 49
4-1實驗系統的再現性 51
4-2 微孔徑碳吸附劑的吸附特性 56
4-3 中孔徑矽分子篩吸附劑的吸附特性 60
4-3.1 MCM-41吸附劑吸附特性 60
4-3.2 MCM-41加壓對於層析圖譜的影響 72
4-3.3 MCM-48及SBA-15吸附劑之吸附特性 75
4-4 結論 98
參考文獻 100
參考文獻
1. M.J. Molina, F.S. Rowland “Stratospheric Sink for Chlorofluoromethaned : Chlorine atom Catalyzed Destruction of Ozone” Nature. 1974, 249, 810,

2. United Nations Enviromental Programme (UNEP). Montreal
Protocol on substances that deplete the ozone layer.September 16,
Montreal, 1987.

3. S. A. Montzka, J.H. Butler, R.C. Myers, T.M. Thompson, T.H. Swanson, A.D. Clarke, L.T. Lock, J.W. Elkins ”Decline in the tropospheric abundance of halogen form halocarbons : implications for stratospheric ozone depletion”, Science 1996, 272, 1318-1322.

4. P.J. Fraser, D.M. Cunnold, F.N. Alyea, R.F. Weiss, R. Prinn, P. G. Simmonds, B.R. Miller, R.L. Langenfelds ”Lifetime and emission estimates of 1,1,2-trichlorotrifluorethane(CFC-113) from daily global background observation June 1982-June 1994”, J. Geophys. Res. 1996, 101, 12585-12599.

5. 蔡政雄 王家麟 臭氧前趨物連續監測與臭氧生成之光化學探討 中華民國九十年六月 中央大學 化學研究所 碩士論文。

6. http://www.jrf.org.tw/reform/file_5_1.htm

7. T. Laurila, H. Hakola “Seasonal cycle of C2-C5 hydrocarbons over the Baltic Sea and northern Finland” Atmos. Environ. 1996, 30, 1597-1607.

8. T.F. Dann, D.K. Wang “Ambient air benzene concentrations in Canada (1989-1993) seasonal and day of week variations, trends and source influences” J. Air Waste Manage. Assoc. 1995, 45, 695-702.

9. W.-H. Ding, J.-L. Wang “Spatial concentration profiles of C2-C6 hydrocarbons in the atmosphere of Taipei metropolitan area” Chemosphere. 1998, 37, 1187-1195.

10. USEPA “Compendium Method TO-14: Determination Of Volatile Organic Compounds (VOCs) In Ambient Air Using Specially Prepared Canisters With Subsequent Analysis By Gas Chromatography”

11. D. Helmig and J.P. Greenberg “Automated in-situ gas chromatographic-mass spectrometric analysis of ppt level volatile organic trace gases using multistage solid-adsorbent trapping” J. Chromatogr. A 1994, 677, 123-132.

12.USEPA “Compendium Method TO-1: Method for the Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Tenax-TA Adsorption and Gas Chromatography/Mass Spectrometry (GC/MS)”

13. USEPA “Compendium Method TO-2: Method for the Determination of Volatile Organic Compounds (VOCs) in Ambient Air by Carbon Molecular Sieve Adsorption Gas Chromatography/Mass Spectrometry (GC/MS) ”

14. M. Harper “Sorbent trapping of volatile organic compounds from air” J. Chromatogr. A 2000, 885, 129-151.

15. USEPA “Compendium Method TO-17 Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes”

16. J. Dewulf, H. Van Langenhove “Chlorinated C1 hydrocarbons and C2 hydrocarbons and monocyclic aromatic-hydrocarbons in marine waters- An overview on fate processes, sampling, analysis and measurements” Water Res. 1997, 31 1825-1838.

17. D.D. Parrish, F.C. Fehsenfeld “Methods for gas-phase measurements of ozone,ozone precursors and aerosol precursors” Atmospheric Environment. 2000, 34, 1921-1957.

18. J.T. Pisano, C.G. Sauer, J. Robbins, J.W. Miller, H. Gamble and T.D. Durbin “A UV differentialoptical absorption spectrometer for the measurement of sulfur dioxide emissions form vehicles” Meas. Sci. Technol. 2003,14, 2089-2095.

19. http://www.niea.gov.tw/niea/AIR/A71511B.htm

20. J.L. Wang*, C.J. Chang, W.D. Chang, C. Chew, S.W. Chen “Construction and evaluation of automated gas chromatography for the measurement of anthropogenic halocarbons in the atmosphere” Journal of Chromatography A. 2000, 844, 259-269.

21. J.L. Wang*, S.W. Chen, C.Chew “Automated gas chromatography with cryogenic/sobent trap for the measurement of volatile compounds in the atmosphere” Journal of Chromatography A. 1999, 863, 183-193.

22. F. Brunner, G. Crescentini, L. Lattanzi, F. Mangani “Capillary gas-chromatography with graphitized carbon black” J. Chormatography. 1990, 517, 123-129.

23. W. Engewald, J. Porschmann, T. Welsh “Graphitized thermal carbon-black as a shape selective stationary phase in GC” Chromatographia. 1990, 30, 537-542.

24. W.R. Betz, W.R. Supina “Determination of the gas chromatographic performance-characteristics of several graphitized carbon blacks” J. Chromatography.1989, 471, 105-112.

25. N.V. Kovaleva, K.D. Scherbakova “Carbon adsorbents in gas adsorption chromatography.” J. Chromatography. 1990, 520, 55-68.

26. M.T. Gilbert, J.H. Knox, B. Kaur “Porous Glassy-Carbon, a new columns packing material for gas-chromatography and High-Performance Liquid-Chromatography” Chromatographia.1982 16, 138-148.

27. F.D. Shire, M. Jagtoyen, B. McEnaney, A. Sethuraman, J.M. Stencel, M.W. Thwaites “The production of activated carbons form coals by chemical activation” Abstracts of Papers of the American Chemical Socienty.1991, 202, 48.

28. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuil, J.S. Beck “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism” Nature. 1992, 359, 710-712.

29. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonwicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. Higgins, J.L. Schlenker “A new family of mesoporous molecular sieves prepared with liquid crystal templates” J. Am. Chem. Soc. 2002, 114, 10834-10843.

30. C. Vartuli, C.T. Kresge, W.J. Roth, S.B. McCullen, J.S. Beck, K.D.Schmitt, M.E. Leonowicz, J.D. Lutner, E.W. Sheppard in Advanced Catalysis and Nanostructured Materials: Modern Synthesis Methods (Ed: W.R. Moser), Academic Press, New York, 1996, 1-19.

31. J. Y. Ying, C.P. Mehnex, M.S. Wong “Synthesis and Applications of Supramolecular-Templated Mesoporous Materials” Angew. Chem. Int. Ed. 1999, 38, 56-57.

32. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli(Mobil Oil Corp.), US-A 5098684, 1992 【Chem. Abstr. 1992, 177, 72621】.

33. J.C. Vartuli, K.D. Schmitt, C.T. Kresge, W.J. Roth, M.E. leonowicz, S.B.McCullen, S.D. Hellring, J.S. Beck, J.L. Schlenker, D.H. Olsen, E.W.Sheppard “Effect of Surfactant/Silica Molar Ratios on the Formation of Mesoporous Molecular Sieves: Inorganic Mimicry of Surfactant Liquid-Crystal Phases and Mechanistic Implications” Chem. Mater. 1994, 6, 2317-2326.

34. J.C. Vartuli, C.T. Kresge, W.J. Roth, S.B. McCullen, J.S. Beck, K.D. Schmitt, M.E. Leonowicz, J.D. Lutner, E.W. Sheppard in Proceedings of the209th ACS National Meeting, Division of Petroleum Chemistry. 1995, pp.21-25.

35. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F.Chmelka, G.D. Stucky “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores”Science, New Series, Vol. 279, No. 5350. (Jan. 23, 1998), pp. 548-552.

36. J.Fan, C. Yu, L. Wang, B. Tu, D. Zhao, Y. Sakamoto, O. Terasaki, “Mesotunnels on the Silica Wall of Ordered SBA-15 to Generate Three-Dimensional Large-Pore Mesoporous Networks”J. Am. Chem. Soc. (Communication), 2001, 123(48), 12113-12114.

37. 王奕凱,邱宗明,李秉傑合譯,非均勻系催化原理與應用,國立編譯館,渤海堂文化公司,台北,1993。

38. 王介亨 王家麟 以Heart-cut技術配合單偵測器發展氣相層析”剪裁(tailoring)”技術 中華民國九十三年六月 國立中央大學 化學研究所 碩士論文。

39. J. Dewulf, H.V. Langenhove “Chlorinated C1 hydrocarbons and C2 hydrocarbons and monocyclic aromatic-hydrocarbons in marine waters- An overview on fate processes, sampling, analysis and measurements” Water Res. 1997, 31, 1825-1838.

40. J.M. Sanchez, R.D. Sacks “On-Line Multibed Sorption Trap andInjector for the GC Analysis of Organic Vapors in Large-Volumn, Air Samples” Anal. Chem. 2003,75,978-985.

41. C. Monn, M. Hangatner “Passive sampling of aromatic volatile organic compounds in ambient air in Switzerland” Environ. Technol. 1996, 17, p301-307.

42. 丁君強 高憲明 含鋁中孔洞分子篩之結構鑑定與催化活性研究:直接合成與後修飾法之比較 中華民國九十二年六月 國立中央大學 化學研究所 碩士論文。

43. 吳欣茂 高憲明 利用沸石前驅物與Gemini界面活性劑合成含鋁之MCM-48中洞孔分子篩 中華民國九十三年六月 國立中央大學 化學研究所 碩士論文。

44. 陳彥銓 王家麟 以質譜儀同時分析C3-C12揮發性臭氧前驅物 中華民國九十三年六月 國立中央大學 化學研究所 碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔