(18.204.227.34) 您好!臺灣時間:2021/05/19 08:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳俊達
研究生(外文):Jyun-Da Wu
論文名稱:具乙烯官能基之立方結構中孔洞材料FDU-12與SBA-1的合成與鑑定
論文名稱(外文):Synthesis and Characterization of Cubic Mesoporous Silicas FDU-12 and SBA-1 with Vinyl Functionality
指導教授:高憲明
指導教授(外文):Hsien-Ming Kao
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:146
中文關鍵詞:乙烯官能基中孔複合材料
外文關鍵詞:mesoporoussilicaFm3mIa3dhybridFDU-12SBA-1functionalizedvinyl
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要

在室溫及酸性條件下,以四乙氧基矽酸鹽 (TEOS) 與三甲氧基乙烯基矽酸鹽 (TMVS) 作為共同矽源,分別使用三嵌段高分子 Pluronic F127 與溴化16基三乙氧基銨 (CTEABr) 作為主要模板試劑,以直接合成法製備結構排列整齊、具有立方、中孔洞並含有乙烯官能基的二氧化矽材料 FDU-12 (Fm3m) 與 SBA-1 (Pm3n)。

乙烯官能基的含量可藉由固態 13C 與 29Si 核磁共振光譜加以證明。而相較於直接合成乙烯官能基化的SBA-15,乙烯官能基化的 FDU-12 與 SBA-1 其乙烯官能基含量分別可達到 30 % 與 25 % 而不會對中孔洞立方結構造成損壞或無法控制的相轉變。

乙烯官能基化 FDU-12 其C=C雙鍵可輕易吸附 Methyl methacrylate (MMA) 而在孔洞中進行高分子聚合反應。

乙烯官能基化 SBA-1 的中孔洞結構在 HCl/EtOH 溶劑萃取處理下較純 SBA-1 來得規則而穩定。
Abstract

Direct synthesis of well-ordered cubic mesoporous silicas FDU-12 (Fm3m) and SBA-1 (Pm3n) with vinyl functionality were direct-synthesized via room temperature co-condensation of tetraethoxysilane (TEOS) and trimethoxyvinylsilane (TMVS) major templated with tri-block copolymer Pluronic F127 and cetyltriethylammonium bromide (CTEABr) under acidic conditions, respectively, has been achieved.

Qualitative evidence of the presence of chemically attached vinyl moieties was provided by solid-state 13C and 29Si NMR. In contrast to the direct synthesis of vinyl-functionalized SBA-15, the concentration of TMVS that co-condensed with TEOS could be up to 30% and 20% without observing significant loss in the long-range mesostructural ordering and uncontrollable phase transformation of the vinyl-functionalized FDU-12 and SBA-1, respectively.

The C=C double bonds of vinyl groups on v-FDU-12 are readily accessible to adsorbed methylmethacrylate (MMA) to induce polymerization within the mesopores.

Vinyl-functionalized SBA-1 materials have a better ordered and stable structure towards the treatment with the solvent extraction (HCl/EtOH) than the pure silica SBA-1 without any functionality.
目 錄

中文摘要 ........................................................................................... I
英文摘要 ........................................................................................... II
致謝 ................................................................................................... III
目錄 ................................................................................................... IV
圖目錄 ............................................................................................... IX
表目錄 ............................................................................................... XII
第一章︰引言 ................................................................................... 1
1-1. 觸媒簡介 ............................................................................. 1
1-2. 界面活性劑簡介 ................................................................. 2
1-3. 微胞的形成與種類 ............................................................. 4
1-4. 中孔洞分子篩的歷史與發展 ............................................. 5
1-5. SBA-1 簡介 ......................................................................... 10
1-6. FDU-12 簡介 ....................................................................... 11
1-7. 官能基化中孔洞分子篩簡介 ............................................. 13
1-8. 研究動機與目的 ................................................................. 15
第二章︰實驗 ................................................................................... 17
2-1. 藥品 ..................................................................................... 17
2-2. 實驗步驟 ............................................................................ 18
2-2.1. 合成 v-FDU-12-X ....................................................... 18
2-2.2. 以溶劑萃取法移除 v-FDU-12-X 孔洞中的模板 .... 19
2-2.3. 以 v-FDU-12-X 與 MMA 進行高分子聚合反應 .. 20
2-2.4. 合成界面活性劑 CTEABr ......................................... 22
2-2.5. 合成 N_v-SBA-1-X .................................................... 23
2-2.6. 以溶劑萃取法移除 N_v-SBA-1-X 孔洞中的模板 24
2-3. 鑑定 ..................................................................................... 25
2-3.1. X光繞射 ...................................................................... 25
2-3.2. 氮氣吸脫附等溫曲線、表面積 與孔洞特性鑑定 ..... 25
2-3.3. 固態核磁共振 ............................................................. 27
2-3.4. 熱重分析 ..................................................................... 28
2-3.5. 穿透式電子顯微技術 ................................................. 29
2-3.6. 掃描式電子顯微技術 ................................................. 29
2-3.7. 紅外線光譜儀 …………............................................. 30
第三章︰結果與討論 ....................................................................... 31
3-1. v-FDU-12-X .......................................................................... 31
3-1.1. XRD .............................................................................. 31
3-1.2. 氮氣等溫吸脫附曲線與孔洞性質 ............................. 35
3-1.3. 13C、29Si 與 1H 固態核磁共振光譜 .......................... 37
3-1.4. 熱重分析 ................................................................... 43
3-1.5. SEM 與 TEM .............................................................. 45
3-1.6. FT-IR 紅外線光譜 ...................................................... 46
3-1.7. PMMA-FDU-12 之 XRD ............................................ 49
3-1.8. PMMA-FDU-12 之氮氣等溫吸脫附曲線
與孔洞分析 .................................................................. 50
3-1.9. PMMA-FDU-12 之核磁共振光譜 ............................. 51
3-1.10. PMMA-FDU-12 之熱重分析 ................................... 53
3-2. N_v-SBA-1-X ........................................................................ 55
3-2.1. 460_v-SBA-1-X 之 XRD ............................................ 55
3-2.2. 230_v-SBA-1-X 之 XRD ............................................ 57
3-2.3. v-SBA-1-X 的氮氣等溫吸脫附曲線圖與孔洞性質 . 60
3-2.4. 13C、29Si 與 1H 固態核磁共振光譜 ........................... 63
3-2.5. FT-IR 紅外線光譜 ...................................................... 68
3-2.6. 熱重分析 ..................................................................... 70
3-2.7. SEM ............................................................................... 72
第四章︰結論 ................................................................................... 73
參考文獻 ........................................................................................... 74
補充資料 ........................................................................................... 82

附錄 A︰SIMPSON
Simulation of Solid State NMR experiment .................. 83
A-1. SIMPSON 簡介 ............................................................. 83
A-2. 研究目的與動機 ........................................................... 83
A-3. 安裝 ............................................................................... 84
A-3.1. cygwin + SIMPSON 1.1.0 .................................... 85
A-3.2. SIMPSON 1.1.1 (Windows Installer) ...................... 91
A-4. 執行模擬與觀看結果 ................................................... 92
A-4.1. 檔案格式與資料結構 ........................................... 92
A-4.2. 模擬運算 ............................................................... 93
A-4.3. 觀看結果 ............................................................... 93
A-5. 範例 ............................................................................... 95
A-5.1. 範例檔案的取得與瀏覽 ....................................... 95
A-5.2模擬 13C-15N REDOR .............................................. 97
A-6. 參考文獻 ....................................................................... 103
附錄 B︰固態高分子電解質薄膜 ............................................. 105
B-1. 引言 ............................................................................... 105
B-2. 研究動機 ....................................................................... 108
B-3. 實驗 ............................................................................... 108
B-3.1. F127 + Brij 58 系列 .............................................. 108
B-3.2. F127 + Brij 78 系列 .............................................. 109
B-4. 結果與討論 ................................................................... 110
B-4.1. XRD ......................................................................... 110
B-4.2. 交流阻抗分析 ....................................................... 112
B-4.3. 示差掃描卡計 ....................................................... 117
B-5. 結論 ............................................................................... 119
B-6. 參考文獻 ....................................................................... 120
附錄 C︰SH官能基化 SBA-1 ................................................... 121
C-1. 實驗步驟 ....................................................................... 121
C-1.1. 合成 SH-SBA-1-X ................................................ 121
C-1.2.溶劑萃取法移除 SH-SBA-1-X 孔洞中之模板 ... 121
C-2. 實驗結果 ....................................................................... 121
C-2.1. XRD ........................................................................ 121
C-2.2. 氮氣等溫吸脫附曲線圖與孔洞性質 ................... 124
C-2.3. FT-IR ....................................................................... 125
C-2.4. NMR ........................................................................ 126
附錄 D︰SH 官能基化 SBA-1 加醣 (D-Fructose) ................. 127
D-1. 實驗步驟 ....................................................................... 127
D-1.1. 合成 SH-SBA-1-X_D-HT-Ht ................................ 127
D-1.2. 溶劑萃取法移除 SH-SBA-1-X_D-HT-Ht
孔洞中之模板 ...................................................... 127
D-2. 實驗結果 ....................................................................... 127
D-2.1. SH-SBA-1-X_1.3D-8h50-1h100 之XRD
與性質列表 .......................................................... 127
D-2.2.1. SH-SBA-1-X_1.3D-24hRT-1h100 之XRD
與性質列表 ........................................................ 130
D-2.2.2. SH-SBA-1-X_1.3D-24hRT-1h100 之
13C CP/MAS NMR .............................................. 132
D-2.2.3. SH-SBA-1-X_1.3D-24hRT-1h100 之
29Si CP/MAS NMR ............................................. 132
D-2.2.4. SH-SBA-1-X_1.3D-24hRT-1h100 之
29Si MAS NMR ................................................... 133
D-2.3. SH-SBA-1-X_1.3D-48hRT-1h100 之XRD
與性質列表 ........................................................ 134
D-2.4. SH-SBA-1-X_2.35D-8h50-1h130 之XRD
與性質列表 ........................................................ 136
附錄 E︰乙烯官能基化 SBA-1 加醣 (D-Fructose) ................ 138
E-1. 實驗步驟 ....................................................................... 138
E-1.1. 合成 v-SBA-1-X_D-HT-Ht ................................... 138

E-1.2. 溶劑萃取法移除 v-SBA-1-X_D-HT-Ht
孔洞中之模板 ...................................................... 138

E-2. 實驗結果 ....................................................................... 138
E-2.1. v-SBA-1-X_1.3D-8h50-1h100 之XRD
與性質列表 .......................................................... 138
E-2.2.1. v-SBA-1-X_1.3D-24hRT-1h100 之XRD
與性質列表 ........................................................ 141
E-2.2.2. v-SBA-1-X_1.3D-24hRT-1h100 之
13C CP/MAS NMR .............................................. 143
E-2.2.3. v-SBA-1-X_1.3D-24hRT-1h100 之
29Si CP/MAS NMR ............................................. 143
E-2.2.4. v-SBA-1-X_1.3D-24hRT-1h100 之
29Si MAS NMR ................................................... 144
E-2.3. v-SBA-1-X_2.35D-8h50-1h130 之XRD
與性質列表 ........................................................ 145
參 考 文 獻

[1] (a) Wang, Y. Q.; Yang, C. M.; Zibrowius, B.; Spliethoff, B.; Lindén, M.; Schüth, F. Chem. Mater. 2003, 15, 5029-5035.
(b) Wang, Y. Q.; Zibrowius, B.;Yang, C. M.; Spliethoff, B.; Schüth, F. Chem. Commun. 2004, 46-47.
[2] (a) Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 1729-1742.
(b) Heck, R. F.; Breslow, D. S. J. Am. Chem. Soc. 1961, 83, 4023-4027.
(c) Heck, R. F.; Adv. Organomet. Chem. 1966, 4, 243.
(d) Brown, C. K.; Wilkinson G.; J. Chem. Soc. A. 1970, 2753.
[3] Bond, G. C. “Heterogeneous Catalysis:Principles and Applications.” 2nd ed. Clarendon Press, Oxford, UK, 1987.
[4] Miessler, G. L.; Tarr, D.A. “Inorganic Chemistry”, 2nd ed, Prentice Hall, New York, 1999. pp. 498
[5] (a) Satterfield, C. N. “Heterogeneous Catalysis in Practice”, McGraw-Hill, New York, 1980.
(b) Satterfield, C. N. “Heterogeneous Catalysis in Industrial Practice”, McGraw-Hill, New York, 1991.
[6] Todros, T. F. “Surfactant”, Academic Press, London, 1984.
[7] (a) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc. Faraday Trans. 1976, 72, 1525-1568.
(b) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. Biochim. Biophys. Acta 1977, 470, 185-201.
[8] Tanford, C. “The Hydrophobic Effect: Formation of Micelles and Biological Membranes”, Wiley, New York, 1973.
[9] Evans, F. D.; Wennerstrom, H. “The Colloidal Domain”, 2nd Ed, VHC, New York, 1999.
[10] (a) Qi, L.; Ma, J.; Cheng, H.; Zhao, Z. “Colloids and Surfaces A”, 1996, 111, 195-202
(b). Li, Y.; Park, C.-W. Langmuir, 1999, 19, 952-956.
[11] McBain, J. N. “The Sorption of Gases and Vapors by Solids”, George Rutledge and Sons Ltd., London, 1932.
[12] Freude, D.; Hunger, M.; Pfeifer, H. Z. Phys. Chem. 1987, 152, 171.
[13] (a) Yang, S. M.; Wu, S. T.; Chin, J. Chem. Soc., 1988, 35, 141.
(b) Hedge, S.G.; Ratnasamy, P.; Kustov, L. M.; Kazansky, V. B. Zeolites, 1988, 8, 137.
(c) Davis, M. E.; Montes, C.; Garces, J. M. ACS symposium series, 1989, 399, 291.
[14] (a) Kresge, C. T.; Leonowicz, M. E.; Roth, E. J.; Vartuli, J. C.; Beck, J. S. Nature, 1992, 359, 710-712.
(b) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.;Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenkert, J. L. J. Am. Chem. Soc. 1992, 114, 10834-10843.
[15] (a) Busio, K.; Jänchen, J.; van Hooff, J. H. C. Microporous Mater. 1995, 5, 211-218.
(b) Weglarski, J.; Datka, J.; He, H.; Klinowski, J. J. Chem. Soc. Faraday Trans. 1996, 92, 5161-5164.
(c) Kosslick, H.; Lischke, G.; Walther, G.; Storek, W.; Martin, A.; Fricke, R. Microporous Mater. 1997, 9, 13-33.
(d) Cheng, C.-F.; Klinowski, J. J. Chem. Soc. Faraday Trans. 1996, 92, 289-292.
(e) Luan, Z.; He, H.; Zhou, W; Cheng, C.-F.; Klinowski, J. J. Chem. Soc. Faraday Trans. 1995, 91, 2955-2959.
(f) Mokaya, R.; Jones, W. Chem. Commun., 1996, 983-984.

[16] Firouzi, A.; Kumar, D.; Bull, L. M.; Besier,T.; Sieger, P.; Huo, Q.; Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Nicol, J.; Margolese, D.; Stucky, G. D.; Chmelka, G. F. Science. 1995, 267, 1138-1143.
[17] (a) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G.D. Science. 1998, 279, 548-552.
(b) Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024-6036.
[18] Pluronic poly(alkene oxide) triblock copolymers are trademarked products of BASF, Mt. Olive, NJ.
[19] (a) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature. 1994, 368, 317-321.
(b) Chen, C.; Li, H.; Davis, M. E. Microporous Mater. 1993, 2, 17.
(c) Attard, G. S.; Glyde, J. C. Nature. 1995, 378, 366-368.
(d) Göltner, C. G.; Antonietti, M. Adv. Mater. 1997, 9, 431-436.
[20] (a) Imperor-Clerc, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc. 2000, 122, 11925-11933.
(b) Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Chem. Mater.; 2000, 12, 1961-1968.
(c) Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M. J. Phys. Chem. B. 2000, 104, 11465-11471.
(d) Ravikovitch, P. I.; Neimark, A. V. J. Phys. Chem. B. 2001, 105, 6817-6823.
[21] Kim, J. M.; Sakamoto, Y.; Hwang, Y. K.; Kwon, Y.-U.; Terasaki, O.; Park, S.-E.; Stucky, G. D. J. Phys. Chem. B. 2002, 106, 2552-2558.
[22] IUPAC. “Manual of Symbols and Serminology for Physicochemical Quantities and Units. Appendix II : Denitions, Terminology and Symbols in Colloid and Surface Chemistry part I”, Pure Appl. Chem., 1972, 31, 579

[23] (a) Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F.; Schuüth, F.; Stucky, G. D. Chem. Mater. 1994, 6, 1176-1191.
(b) Huo, Q.; Leon, R.; Petroff, P. M.; Stucky, G. D. Science 1995, 268, 1324-1327.
(c) Huo, Q.; Margolese, D. I.; Stucky, G. D. Chem. Mater. 1996, 8, 1147-1160.
[24] Kim, M. J.; Ryoo, R. Chem. Mater. 1999, 11, 487-491.
[25] Fan, J.; Yu, C.; Gao, F.; Lei, J.; Tian, B.; Wang, L.; Luo, Q.; Tu, B.; Zhou, W.; Zhao, D. Angew.Chem.Int.Ed. 2003, 42, 3146 -3150.
[26] (a) Yu, C.; Tian, B,; Fan, J.; Stucky, G. D.; Zhao, D. Chem. Commum. 2001, 2726-2727
(b) Yu, C.; Tian, B.; Fan, J.; Stucky, G. D.; Zhao, D. J. Am. Chem. Soc. 2002, 124, 4556-4557.
[27] (a) Schierbaum, K. D.; Weiss, T.; Velzen, E. U. T. van; Engbersen, J. F. J.; Reinhoudt, D. N.; Gopel, W. Science. 1994, 265, 1413-1415.
(b) Sayari, A. Chem. Mater. 1996, 8, 1840-1852.
(c) Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.; Liu, J.; Kemner, K. M. Science. 1997, 276, 923-926.
[28] (a) Liu, J. Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.; Gong, M. L. Adv. Meter. 1998, 10, 161-165.
(b) Moller, K.; Bein, T. Stud. Surf. Sci. Catal. 1998, 117, 53-.
(c) Brunel, D. Microporous Mesoporous Mater. 1999, 27, 329-344.
(d) Impens, N. R. E. N.; Van der Voort, P.; Vansant, E. F. Microporous Mesoporous Mater. 1999, 28, 217-232.
(e) Clark, J. H.; Macquarrie, D. J.; Wilson, K. Stud. Surf. Sci. Catal. 2000, 129, 251-.
(f) Walcarius, A.; Etienne, M.; Lebeau, B. Chem. Mater. 2003, 15, 2161-2173

[29] Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Meter. 2000, 12, 1403-1419.
[30] Yamada, T.; Zhou, H.-S.; Uchida, U.; Tomita, M.; Ueno, Y.; Ichino, T.; Honma, I.; Asai, K.; Katsube, T. Adv. Mater. 2002, 14, 812-815.
[31] Asefa, T.; Kruk, M.; MacLachlan, M. J.; Coombs, N.; Grondey, H.; Jaroniec, M.; Ozin, G. A. Adv. Funct. Mater. 2001, 11, 447-456.
[32] (a) Lim, M. H.; Blanford, C. F.; Stein, A. J. Am. Chem. Soc. 1997, 119, 4090-4091.
(b) Engelhardt, G.; Groeger, O.; Palm, C.; Röser, T. J. Phys. Chem. B 2000, 104, 3532-3544.
[33] (a) Ji, X.; Hampsey, J. E.; Hu, Q.; He, J.; Yang, Z.; Lu, Y. Chem. Mater. 2003, 15, 3656-3662
(b) Ueda, J.; Sato, S.; Tsunokawa, A.; Yamauchi, T.; Tsubokawa, N. Eur. Polym. J. 2005, 41, 193-200.
[34] Moller, K.; Bein, T.; Fischer, R. X. Chem. Mater. 1999, 11, 665-673.
[35] Gibbons, G. J.; Holland, D.; Howes, A. P. J. Sol-Gel. Sci. Tech. 1998, 13, 379-383.
[36] Engelhardt, G.; Michel, D. “High-Resolution Solid-State NMR of Silicates and Zeolites”, John Wiley & Sons Inc, New York. 1988.
[37] (a) Steel, A.; Carr, S. W.; Anderson, M. W. Chem. Mater. 1995, 7, 1829-1832.
(b) Lim, M. H.; Stein, A. Chem. Mater. 1999, 11, 3285-3295.
[38] Blin, J. L.; Gerardin, C.; Rodehuser, L.; Selve, C.; Stebe, M. J. Chem. Mater. 2004, 16, 5071-5080.
[39] (a) Zhan, B.-Z.; White, M. A.; Lumsden, M. Langmuir, 2003, 19, 4205-4210
(b) He, J.; Shen, Y.; Yang, J.; Evans, D. G.; Duan, X. Chem. Mater. 2003, 15, 3894-3902.
[40] Cazacu, M.; Dragan, S.; Vlad, A. J. Appl. Polym. Sci. 2003, 88, 2060-2067.
[41] (a) Percy, M. J.; Michailidou, V.; Armes, S. P.; Perruchot, C.; Watts, J. F.; Greaves, S. J. Langmuir, 2003, 19, 2072-2079.
(b) Percy, M. J.; Amalvy, J. I.; Randall, D. P.; Armes, S. P.; Greaves, S. J.; Watts, J. F. Langmuir, 2004, 20, 2184-2190.
[42] (a) Gregg, S.J.; Sing, K. S. W. “Adsorption, surface area and porosity”, 2nd ed. Academic Press, London. 1982, pp. 262
(b) Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603-619.
[43] Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shin, H. J.; Ryoo, R. Nature, 2000, 408, 449-453.
[44] Che, S.; Kamiya, S.; Terasaki, O.; Tatsumi, T. J. Am. Chem. Soc. 2001, 123, 12089-12090.
[45] Che, S.; Sakamoto, Y.; Terasaki, O.; Tatsumi, T. Chem. Lett. 2002, 31, 214-215.
[46] Koyano, K. A.; Tatsumi, T.; Tanaka, Y.; Nakata, S. J. Phys. Chem. B, 1997, 101, 9436-9440.
[47] Kim, M. H.; Blanford, C. F.; Stein, A. Chem. Mater. 1998, 10, 467-470.
[48] Hiemenz, P. C.; Rajagopalan, R. “Principles of Colloid and Surface Chemistry”, 3rd ed. Marcel Dekker, New York, 1997.
[49] Barrett, E. P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373-380.
[50] Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. J. Am. Chem. Soc. 1940, 62, 1723-1732.
[51] (a) Andrew, E. R.; Bradbury, A.; Eades, R. G. Nature 1958, 182, 1659.
(b) Andrew, E. R.; Bradbury, A.; Eades, R. G. Nature 1959, 183, 1802.

[52] (a) Pines, A.; Gibby, M. G.; Waugh, J. S. J. Chem. Phys. 1971, 56, 1776.
(b). Pines, A.; Gibby, M. G.; Waugh, J. S. J. Chem. Phys. 1971, 59, 596.
[53] (a) Schaefer, J.; Stejskal, E. O.; Buchdahl, R. Macromolecule 1975, 8, 291.
(b) Schaefer, J.; Stejskal, E. O. J. Am. Chem. Soc. 1976, 98, 1031.
(c) Schaefer, J.; Stejskal, E. O.; Buchdahl, R. Macromolecule 1977, 10, 385.
(d) Stejskal, E. O.; Schaefer, J.; Waugh, J. S. J. Magn. Reson. 1977, 28, 105.
[54] (a) Tanev, P. T.; Pinnavaia, T. J. Science. 1995, 267, 865-867.
(b) Bagshaw, S. A.; Prouzet, E.; Pinnavaia. T. J. Science. 1995, 269, 1242-1244.
[55] (a) Prouzet, E.; Pinnavaia. T. J. Angew. Chem. Int. Ed.; 1997, 36, 516-518.
(b) Antonietti, M.; Göltner, C. G. Angew. Chem. Int. Ed.; 1997, 36, 910-928.
(c) Firouzi, A.; Atef, F.; Oertli, A. G.; Stucky, G. D.; Chmelka, B. F. J. Am. Chem. Soc. 1997, 119, 3596-3610.
[56] Sayari, A.; Hamoudi, S. Chem. Mater. 2001, 13, 3151-3168.
[57] (a) Burkett, S. L.; Sims, S. D.; Mann, S. Chem. Comm. 1996, 1367-1368
(b) Mercier, L.; Pinnavaia, T. J. Chem. Mater. 2000, 12, 188-196.
(c) Kruk, M.; Asefa, T.; Coombs, N.; Jaroniec, M.; Qzin, G. A. J. Mater. Chem. 2002, 12, 3452-3457.
[58] Hall, S. R.; Fowler, C. E.; Lebeau, B.; Mann, S. Chem. Commun. 1999, 201-202.

[59] (a) Mori, Y.; Pinnavaia, T. J. Chem. Mater. 2001, 13, 2173-2178.
(b) Burleigh, M. C.; Markowitz, M. A.; Spector, M. S.; Gaber, B. P. J. Phys. Chem. B 2001, 105, 9935-9942.
[60] Macquarrie, D. J.; Jackson, D. B.; Mdoe, J. E.; Clark, J. H. New J. Chem. 1999, 23, 539-544.
[61] Kruk, M.; Asefa, T.; Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc. 2002, 124, 6383-6392.
[62] (a) Kruk, M.; Asefa, T.; Whitnal, W.; Kruk, M.; Yoshina-Ishii, C.; Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc. 2002, 46, 13886-13895.
(b) Sayari, A.; Hamoudi, S.; Yang, Y.; Moudrakovski, I. L.; Ripmeester, J. R. Chem. Mater.; 2000, 12, 3857-3863.
(c) Yang, Q.; Li, Y.; Zhang, L.; Yang, J.; Liu, J.; Li, C. J. Phys. Chem. B. 2004, 108, 7934-7937.
(d) Guan, S.; Inagaki, S.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 5660-5661.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊