跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/22 00:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴怡蓉
研究生(外文):Yi-Rong Lai
論文名稱:氧化鈦奈米管之製備、鑑定及催化應用
論文名稱(外文):Preparation, Characterization and Catalytic Applications of Titania Nanotubes
指導教授:簡淑華簡淑華引用關係高憲明
指導教授(外文):Shu-Hua ChienHsien-Ming Kao
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:77
中文關鍵詞:氧化鈦奈米管煅燒鑑定及催化
外文關鍵詞:TiO2-nanotubesAgcalcinationcharacterization and catalysis.
相關次數:
  • 被引用被引用:14
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:1
我們以水熱法製備氧化鈦奈米管Dnt,並以原子吸收光譜(AAS)、熱重分析(TGA)、X射線繞射光譜(XRD)、拉曼光譜、高解析穿透式電子顯微鏡(HRTEM)、N2等溫吸附脫附,以及擴散反射式紫外線-可見光光譜(UV-vis)等工具鑑定。
N2等溫吸附脫附實驗顯示Dnt具有極高的表面積(385 m2/g),遠高於起始二氧化鈦Degussa P25 (50 m2/g)。根據HRTEM觀察,奈米管外徑約8至10 nm,而內徑約6至8 nm。XRD及拉曼光譜指出Dnt的晶型與P25極為不同,並非anatase及rutile。
本研究探討煅燒條件對Dnt的影響─隨著煅燒溫度的提升,Dnt表面積會逐漸地下降,而形態則是會由奈米管狀逐漸變成顆粒狀。Dnt的晶型轉變成anatase發生在300至400 oC間。
Dnt的光催化活性是以亞甲基藍脫色反應評估。Dnt雖然不如P25,但可藉由煅燒而有顯著的提升。這結果顯示其光催化活性是由晶型所支配而非表面積。
我們以初溼含浸法與直接水熱法製備氧化鈦奈米管擔體銀觸媒。NO的程溫脫附實驗顯示水熱法所製備的樣品具有極高的NO吸附能力,並且能將NO分解產生N2。
Titania nanotubes were prepared by hydrothermal method and characterized by atomic absorption spectroscopy (AAS), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), N2 adsorption/desorption iso- therm and diffuse reflectance ultraviolet- visible spectroscopy (UV-vis).
The N2 adsorption/desorption isotherm experiment indicated that Dnt exhibits high surface area (385 m2/g), which is much higher than that of the raw TiO2 Degussa P25 (50 m2/g). The diameter of nanotubes was about 8 to 10 nm with the inner diameter of ca. 6 to 8 nm from HRTEM observation. XRD and Raman spectroscopy indicated that the crystal phase of Dnt is very different from Degussa P25, which is neither the anatase nor the rutile.
The effects of calcination condition of the TiO2-nanotubes were studied in this research. The surface area reduced progressively and the morphology changed from nanotube-shaped to particle form along with the increase of calcination temperature. The crystal phase of Dnt was changed to anatase after calcination between 300 and 400 oC.
The photocatalytic activity of Dnt was evaluated by photobleaching of methylene blue. The activity of the Dnt is poorer than that of the Degussa P25, but being improved significantly by calcination. The results suggested that the photocatalytic activity is dominated by the crystal phase and not the surface phase.
TiO2-nanotube supported Ag catalysts were prepared by incipient-wetness impregnation and direct hydrothermal method. Temperature-programmed desorption of NO (NO-TPD) indicated that the hydrothermal sample exhibits higher capability for NO adsorption and decomposition of NO to N2.
目錄

摘要 ………………………………………………………………….. I
Abstract ………………………………………………………………. II
目錄 …………………………………………………………………. III
圖索引 ………………………………………………………………. V
表索引 ……………………………………………………………... VIII

第一章 緒論 ………………………………………………….. - 1 -
1.1 二氧化鈦簡介 ………………………………………. - 1 -
1.2 氧化鈦奈米管文獻回顧 ……………………………. - 7 -
1.3 研究動機 ……………………………………………. - 13 -

第二章 實驗方法 …………………………………………….. - 15 -
2.1 藥品、氣體及儀器 …………………………………. - 15 -
2.2 觸媒製備 ……………………………………………. - 17 -
2.2.1 氧化鈦奈米管之製備 …………………………. - 17 -
2.2.2 擔體銀觸媒之製備 …………………………….. - 18 -
2.2.2-1 直接水熱法 …………………………….. - 18 -
2.2.2-2 初溼含浸法 …………………………….. - 18 -
2.2.3 煅燒條件 ………………………………………. – 19 -
2.3 觸媒之特性分析 …………………………………….. - 20 -
2.3.1 原子吸收光譜 (AAS) ………………………….. - 20 -
2.3.2 熱重分析 (TGA) ……………………………….. - 20 -
2.3.3 X射線繞射光譜 (XRD)…….………………… - 21 -
2.3.4 拉曼光譜(Raman)……………………………… - 21 -
2.3.5 高解析穿透式電子顯微鏡 (HRTEM)….………. - 22 -
2.3.6 N2等溫吸附脫附……………………………….. - 22 -
2.3.7 擴散反射式紫外線-可見光光譜 (UV-vis) …… - 24 -
2.4 亞甲基藍脫色反應 ….………………………..…….. - 25 -
2.5 NO的程溫脫附 (NO-TPD) …..……………..……… - 28 -

第三章 結果與討論 ……………………………..…………… - 29 -
3.1 特性分析……………………………………………… - 29 -
3.1.1 熱重分析 (TGA) ………………………..……… - 29 -
3.1.2 X射線繞射(XRD) 及拉曼光譜………………… - 31 -
3.1.3 高解析穿透式電子顯微鏡 (HRTEM) ………… - 38 -
3.1.4 N2等溫吸附脫附………………………………. - 42 -
3.1.5 擴散反射式紫外線-可見光光譜 (UV-vis) …… - 46 -
3.2 亞甲基藍脫色反應 ………………….…………….. - 50 -
3.3 NO的程溫脫附 (NO-TPD) .……………..…………. - 57 -
第四章 結論 …………………………………….……………. - 60 -

第五章 未來展望與建議 ……………………………………. - 62 -

參考文獻 ………………………….…………………………… - 63 -
參考文獻

[1] 楊宗志、黃袓恩、譚慶麟、馬光辰、闕振寰、段維垣及劉時杰。『中國大百科全書智慧藏』,智慧藏學習科技公司,台北,2001。
[2] 垰田博史著,張晶、楊健譯。『光觸媒圖解』商周出版,2003,台北。
[3] U. Diebold. “The surface science of titanium dioxide.” Surf. Sci. Reports 48 (2003) 53.
[4] A.J. Bard. “Integrated chemical systems.” John Wiley & Sons, Inc., New York, 1994.
[5] A.L. Linsebigler, G. Lu and J.T. Yate. Jr. “Photocatalysis on TiO2 surface: principles, mechanism, and selected results.” Chem. Rev. 95 (1995) 735.
[6] M.R. Hoffman, S.T. Martin, W.Y. Choi and D.W. Bahneman. “Environ- mental applications of semiconductor photocatalysis.” Chem. Rev. 95 (1995) 69.
[7] A. Fujishima, T.N. Rao and D.A. Tryk. “Titanium dioxide photocatal- ysis.” J. Photochem. Photobio. C 1 (2000) 1.
[8] S. Stevenson et al. (eds). “Metal-Support Interactions in Catalysis, Sintering, and Redidpersion” Van Nostrand Reinhold Company, New York, 1987.
[9] J.A. Horsley. “A molecular orbital study of strong metal-support interact- tion between platinum and titanium dioxide. ” J. Am. Chem. Soc. 101 (1979) 2870.
[10] S.J. Tauster, S.C. Fung, R.T.K. Baker and J.A. Horsley. “Strong interact- tions in metal-support catalysts.” Science 211 (1981) 1121.
[11] 黃冠群。『含鈦孔洞物質之合成、結構特性與催化反應』。碩士論文,國立台灣大學化學系。台北,2003。
[12] J.L. Tsai, H.W. Wang and S.F. Cheng. “Synthesis and characterization of mesoporous titanium oxide.” Stud. Surf. Sci. Catal. 146 (2003) 227.
[13] G. Garnweitner, M. Antonietti and M. Niederberger. “Nonaqueous synthesis of crystalline anatase nanoparticles in simple ketones and aldehydes as oxygen-supplying agents.” Chem. Commun. (2005) 397.
[14] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara. “Formation of titanium oxide nanatube.” Langmuir 14 (1998) 3160.
[15] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara. “Titania nanotubes prepared by chemical processing.” Adv. Mater. 11 (1999) 1307-1311.
[16] Z.-Y. Yuan, W.-Z. Zhou and B.-L. Su. “Hierarchical interlinked structure of titanium oxide nanofibers.” Chem. Commun. (2002) 1202.
[17] 劉育成。『氧化鈦奈米管擔體金屬觸媒之製備及特性分析』博士論文,國立台灣大學化學系。台北,2004。
[18] S. Iijima. “Helical microtubules of graphitic carbon.” Nature 354 (1991) 56.
[19] R. Tenne, L. Margulis, M. Genut and G. Hodes. “Polyhedral and cylin- drical structures of tungsten disulphide.” Nature 360 (1992) 444.
[20] M. Remskar. “Inorganic nanotubes.” Adv. Mater. 16 (2004 ) 1497.
[21] M. Adachi, Y. Murata and M. Harada M and S. Yoshikawa. “Formation of titania nanotubes with high photo-catalytic activity.” Chem. Lett. (2000) 942.
[22] M. Adachi, Y. Murata, I. Okada and Yoshikawa. “Formation of titania nanotubes and applications for dye-sensitized solar cells.” J. Electrochem. Soc. 150 (2003) G488.
[23] P. Hoyer. “Formation of a titanium dioxide nanotube array.”Langmuir 12 (1996) 141.
[24] R. Ma, Y. Bando and T. Sasaki. “Nanotubes of lepidocrocite titanates.” Chem. Phys. Lett. 380 (2003) 577.
[25] R. Ma, T. Sasaki and Y. Bando. “Alkali metal cation intercalation properties of titanate nanotubes.” Chem. Commun. (2005) 948.
[26] R. Ma, K. Fukuda, T. Sasaki, M. Osada and Y. Bando. “Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations.” J. Phys. Chem. B 109 (2005) 6210.
[27] Y. Suzuki and S. Yoshikawa. “Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method.” J. Mater. Res. 19 (2004) 982.
[28] R. Yoshida Y. Suzuki and S. Yoshikawa. “Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes.” Mater. Chem. Phys. 91 (2005) 409.
[29] A. Nakahira, W. Kato, M. Tamai, T. Isshiki and K. Nishio. “Synthesis of nanotube from a layered H2Ti4O9 • H2O in a hydrothermal treatment using various titania sources.” J. Mater. Sci. 39 (2004) 4239.
[30] H. Tokudome and M. Miyauchi. “N-doped TiO2 nanotube with visible light activity.” Chem. Lett. 33 (2004) 1108.
[31] T. Akita, M. Okumura, K. Tanaka, K. Ohkuma, M. Kohyama, T. Koyanagi, M. Date, S. Tsubota and M. Haruta. “Transmission electron microscopy observation of the structure of TiO2 nanotube and Au/TiO2 nanotube catalyst.” Surf. Interface Anal. 37 (2005) 265.
[32] G.-H. Du, Q. Chen, R.-C. Che, Z.-Y. Yuan and L.-M. Peng. “Preparation and structure analysis of titanium oxide nanotubes.” Appl. Phys. Lett. 79 (2001) 3702.
[33] Q. Chen, G.H. Du, S. Zhang and L.-M. Peng. “The structure of titanate nanotubes.” Acta. Cryst. B 58 (2002) 587.
[34] Q. Chen, W.-Z. Zhou, G.-H. Du and L.-M. Peng. “Trititanate nanotubes made via single alkali treatment.” Adv. Mater. 14 (2002) 1208.
[35] Y.-Q. Wang, G.-Q. Hu, X.-F. Duan, H.-L. Sun and Q.-K. Xue. “Microstructure and formation mechanism of titanium dioxide nanotubes.” Chem. Phys. Lett. 365 (2002) 427.
[36] Q.-H. Zhang, L. Gao, J. Sun and S. Zheng. “Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals.” Chem. Lett. (2002) 226.
[37] X.-M Sun and Y.-D. Li. “Synthesis and characterization of ion-exchangeable titanate nanotubes.” Chem. Eur. J 9 (2003) 2229.
[38] C.-H. Lin, S.-H. Chien, J.-H. Chao, C.-Y. Sheu, Y.-C. Cheng, Y.-J. Huang and C.-H. Tsai. “The synthesis of sulfated titanium oxide nanotubes.” Catal. Lett. 80 (2002) 153.
[39] C.-H. Lin, C.-H. Lee, J.-H. Chao, C.-Y. Kuo, Y.-C. Cheng, W.-N. Huang, H.-W. Chang, Y.-M. Huang and M.-K. Shih. “Photocatalytic generation of H2 gas from neat ethanol over Pt/TiO2 nanotube catalysts.” Catal. Lett. 98 (2004) 61.
[40] Y.-F. Chen, C.-Y. Lee, M.-Y Yeng and H.-T. Chiu. “Preparation titanium oxide with various morphologies.” Mater. Chem. Phys. 81 (2003) 39.
[41] C.-C. Tsai and H.-S. Teng. “Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment.” Chem. Mater. 16 (2004) 4352.
[42] 陳興安、鄧熙聖。 『利用銅在二氧化鈦奈米管為觸媒以NH3還原NO反應』第22屆台灣區觸媒與反應工程研討會 (2004)
[43] B.-D. Yao, Y.-F. Chan, X.-Y. Zhang, W.-F. Zhang, Z.-Y. Yang, and N. Wang. “Formation mechanism of TiO2 nanotubes.” Appl. Phys. Lett 82 (2003) 281.
[44] Z.-Y. Yuan and B.-L. Su. “Titanium oxide nanotubes, nanofibers and nanowires.” Colloid and Surfaces A: Phiscochem. Eng. Aspects 241 (2004) 173.
[45] V. Idakiev, Z.-Y. Yuan, T. Tabakova and B.-L. Su. “Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction.” Appl. Catal. A 281 (2005) 149.
[46] D.V. Bavykin, V.N. Parmon, A.A. Lapkin and F.C. Walsh. “The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes.” J. Mater. Chem. 14 (2004) 3370.
[47] D.V. Bavykin, S.N. Gordeev, A.V. Moskalenko, A.A. Lapkin and F.C. Walsh. “Apparent two-dimensional behavior of TiO2 nanotubes revealed by light absorption and luminescence.” J. Phys. Chem. B 109 (2005) 8565.
[48] J.-J. Yang, Z.-S. Jin, X.-D. Wang, W. Li, J.-W. Zhang, S.-L. Zhang, X.-Y. Guo and Z.-J. Zhang. “Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2.” Dalton Trans. (2003) 3898.
[49] S.-L. Zhang, W. Li, Z.-S. Jin, J.-J. Yang, J.-W. Zhang, Z.-L Du and Z.-J Zhang. “Study on ESR and inter-related properties of vacuum-dehydrated nanotube titanic acid.” J. Solid State Chem. 177 (2004) 1365.
[50] M. Zhang, Z.-S. Jin, J.-W. Zhang, X.-Y. Guo, J.-J. Yang, W. Li, X.-D. Wang and Z.-J. Zhang. “Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotube H2Ti2O4(OH)2.” J. Mol. Catal. A 217 (2004) 203.
[51] D.-S. Seo, J.-K. Lee and Hwan Kim. “Preparation of nanotube-shaped TiO2 powder.” J. Crystal Growth 229 (2001) 428.
[52] K.Y. Jung, S.B. Park and M. Anpo. “Photoluminescence and photoactivity of titania particles prepared by the sol–gel technique: effect of calcination temperature.” J. Photochem. Photobio. A 170 (2000) 247.
[53] Y.S. Yang, M.C. Kuo and S.H. Chien. “XPS and TPD studies of NO decomposition on Ag/TiO2 catalysts.” The 21st Taiwan Symposium on Catalysis and Reaction Engineering & The 3rd Conference of the Indo-Pacific Catalysis Association, 2003, P-I-19.
[54] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol and T. Siemieniewska. “Reporting physisorption data for gas/solid systems with specific reference to the determination of surface area and porosity.” Pure & Appl. Chem. 57 (1985) 603.
[55] A. Mills and J. Wang. “Photobleaching of methylene blue sensitized by TiO2: an ambiguous system?” J. Photochem. Photobio. A 127 (1999) 123.
[56] U. Balachandran and N.G. Eror. “Raman-spectra of titanium-dioxide.” J. Solid State Chem. 42 (1982) 276.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top