跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/21 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林憶輝
研究生(外文):Yi-Hui Lin
論文名稱:三維盤狀星系之結構與穩定
論文名稱(外文):The Stability and Structure of Three DImensional Disk Galaxies
指導教授:鄒志剛鄒志剛引用關係彭秋和
指導教授(外文):Chih-Kang ChouQiu-He Peng
學位類別:博士
校院名稱:國立中央大學
系所名稱:天文研究所
學門:自然科學學門
學類:天文及太空科學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:102
中文關鍵詞:銀河系結構穩定性盤狀星系旋渦星系厚度
外文關鍵詞:Disk GalaxiesSpiral GalaxiesThicknessStabilityStructureMilky Way
相關次數:
  • 被引用被引用:0
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
Abstract

In this thesis we calculate the effect of finite disk thickness on the structure and stability of a differentially rotating three-dimensional disk galaxy with stars and gas on the basis of the self-consistent theory of density waves. In this theory, if the matter density is perturbed by some cause, then this initial density perturbation must necessarily generate induced gravitational potential perturbations via the governing three-dimensional Poission equation for the galactic disk with finite thickness whereas the induced gravitational potential response will in turn produce the induced matter density perturbations via the stellar dynamical Jean’s equations for the stars and the continuum fluid dynamical equations for the gas. If this induced matter density perturbation is equal to the initial input density perturbation in amplitude, then such density waves are said to be self-consistent. However, the induced matter density perturbations are computed from the two-dimensional stellar dynamical equations for the stars and the continuum fluid dynamical equations for the gas since it is generally believed that observed majestic sweep of spiral arms across the face of a galaxy is confined entirely in the galactic plane with zero thickness.

In order to bring out the physical significance of the effect of finite thickness clearly we concentrate in this thesis on the axially symmetric modes with azimuthal symmetry. In this way we avoid the WKB approximation generally adopted for the spiral modes. In the limit of an infinitely thin disk, our result naturally reduces to Toomre’s criterion for a stellar disk and to Kalnajs’s result for a gaseous disk. In addition, the effect of finite disk thickness on the stability and spatial structure of genuine three dimensional spiral galaxies is investigated and application of our theory to the Milky Way Galaxy yields good results in general agreement with recent observations.
Contents


Abstract ……………………………………………………………i
Contents …………………………………………………………iii
Figure Captions ……………………………………………………………iv
Chapter 1 Introduction ………………………………………………………1
Chapter 2 Mathematical Formulation for 3D Spiral Galaxies
2-1 Mathematical Formulation for 3D Spiral Galaxies …………11
2-2 The Mathematical Problem ……………………………14
2-3 The Response in Stars to the Spiral Gravitational Potential …………17
2-4 The Response in the Gas to the Spiral Gravitational Potential …………24
Chapter 3 The Local Stability of the Axisymmetric Galactic Disk with Finite Thickness
3-1 The Reduction Factors …………………28
3-2 The Axisymmetric Stellar Disk Models ………………35
Chapter 4 The Local Stability of Spiral Galaxies with Finite Thickness
4-1 Reduction Factors and the Toomre parameter ………………………………… 48
4-2 Stability of 3D Spiral Galaxies ………………63
4-3 The Role of Radial Velocity Dispersion ……………65
4-4 Spiral Structure in 3D Galactic Disks ………………72
Chapter 5 Summary & Conclusion …………………………………………76
Bibliography ……………………………………………………………82
Appendix A The Radial Self-Gravity of the Galactic Disk and the Estimate of the Halo Mass…86
Appendix B The Perturbed Gravitational Potential ………………………95
Appendix C Derivation the Perturbed Gravitational Potential for a Genuine 3D Disk…99
Bibliography

Amaral L. H., Lépine, J. R. D., 1997. MNRAS 286, 885.
Bahcal, J.N., Soneira R.M., 1984. ApJS 55, 67.
Binney, J., Tremaine S., “Galactic Dynamics”, 1987. Princeton University Press.
Bottema, R., A & A 275, 16B.
Danver, C.G., 1942. Ann. Obs. Lund 10, 7.
de Grijs, R., Peletier, R.F., van der Kruit, P.C., 1997. A & A 327, 966.
Elmegreen, D. M., 1998. Galaxies and Galactic Structure. Prentice Hall, Englewood Cliffs, NJ.
Flynn, C., Fuches, B., 1994. MNRAS, 270, 471.
Fuchs, B., von Linden, S., 1998. MNRAS 294, 513.
Fux, R., Martinet, L., 1994. A & A 287, L21.
Gilmore, G., Reid, N., 1983. MNRAS 202, 1025.
Griv, E., Gedalin, M., Yuan, C., 2002. A & A 383, 338.
Jog, C. J., Solomon, P. M. 1984. ApJ 276, 114.
Jog, C. J., 1996. MNRAS 278, 209.
Kalnajs, A. J., 1971. ApJ. 166, 275.
Kennicutt, R.C., Hodge, P., 1982. ApJ. 253, 101.
Kent, S.M., Dame, T.M., Fazio, G., 1991. ApJ. 378, 131.
Kuijken, K., Gilmore, G., 1989. MNRAS 239, 571.
McClure-Griffiths, N. M., Dickey, J. M., Gaensler, B. M., Green, A. J., 2004. ApJ. 607, L127.
Mestel, L., 1963. MNRAS 126, 553.
Kuijken, K., Gilmore, G., 1991. ApJ. 367, L9.
Lépine, J. R. D., 2001. ApJ. 546, 234.
Li, Meng., Luo, Xin-Lian., Peng, Qiu-He., Chou, C.K., 2000. Chin. Phys. Lett. 17, 466.
Lin, C.C., Shu, F. H., 1964. ApJ. 140, 646.
Lin, C.C., Yuan, C., Shu, F. H., 1969. ApJ. 155, 721.
Lindblad, P. O., 1960. Stockholms Obs. Ann. Vol. 21, No. 3, 38.
Long ,Min., Peng, Qiu-He., Luo, Xin-Lian., Chou, C.K., 2000. Chin. Phys. Lett. 17, 929.
Luo, Xin-Lian., Peng Qiu-He., 1999. Chin. Phys. Lett. 16, 931.
Luo, Xin-Lian., Long, Min., Peng, Qiu-He., Chou, C.K., 2000a. Acta Astronomica Sinica 41, 424.
Luo, Xin-Lian., Peng, Qiu-He., Long, Min., Peng, Fang., Chou, C.K., 2000b. Chin. Phys. Lett. 17, 932.
Ma, Jun., Peng, Qiu-He., Chen, R., Li, Z.H., 1997a. A & A Suppl. 126, 503.
Ma, Jun., Peng, Qiu-He., Gu, Qiu-Sheng., 1997b. ApJ. 490, L51.
Ma, Jun., Peng, Qiu-He., Gu, Qiu-Sheng., 1998. A & A Suppl. 130, 449.
Ma, Jun., Zhao, J.L., Shu, C.G., Peng, Q.H., 1999. A & A 350, 31.
Ma, Jun., Zhao, J. L., Chang, F.P., Peng, Q.H., 2000. Acta Astronomica Sinica 41, 172.
Miyamoto, M., Nagai, R., 1975. PASJ 27, 533.
Orlova, N., Korchagin, V., Theis, Ch., 2002. A & A 384, 872.
Parenago, P.P., “Stellar Astronomy”, 1948. [in Russian]
Peng, Fang., Peng, Qiu-He., 2000. Chin. Phys. Lett. 17, 385.
Peng, Qiu-He., Peng, Fang., Chou, C. K., Lin, Yi-Hui, 2002. ApSS 282, 499.
Peng, Q.H., Huang, K. L., Huang, J.H., Li, X.Q., Su, H.J., 1978. Acta Astronomica Sinica 19, 182.
Peng, Q. H., Li, X. Q., Su, H.J., Huang, K.L., Huang, J.H., 1979. Sci. in China 3, 274.
Peng, Qiu-He., 1988. A & A 206, 18.
Peng, Qiu-He., 1992. Acta Astronomica Sinica 33, 362.
Peng, Qiu-He., 1993. Acta Astronomica Sinica 34, 139.
Peng, Qiu-He., Chou, C. K., Lin, Yi-Hui., Luo, Xing-Lian., Peng, F., Long, Min., 2004. New Astronomy (in press).
Rafikov, R. R., 2001. MNRAS 323, 445.
Richter, O. G., Sancisi, R. 1994. A & A 290, L9.
Roberts, M. A., Haynes, M. P., 1994. ARA&A, 32, 115.
Robin, A. C., Creze, M., Mohan, V., 1992. A & A 265, 32.
Rudnick, G., Rix, H. W., 1998. AJ 116, 1163.
Schmidt, M., 1956. Bull. Astron. Inst. Netherlands 13, 15.
Shu, F. Hsia-San., 1968. PhD. Thesis, Harvard University
Toomre, A., 1963. ApJ. 138, 385.
Toomre, A., 1964. ApJ. 139, 1217.
Tsikoudi, V., 1979. ApJ. 234, 842.
Valléé, J. P., 1995. ApJ. 454, 119.
Valléé, J. P., 2002. ApJ. 566, 261.
van der Kruit, P.C., Searle, L., 1981. A & A 95, 116.
Vandervoort, P. O., 1970. ApJ. 161, 87.
Zaritsky, D., Rix, H. W., 1997. ApJ. 477, 118.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top