|
Abramovitz, M. and N. Stegun. (1970). Handbook of Mathematical Func- tions with Formulas, Graphs, and Mathematical Tables. Asmussen, S. and Rubinstein, R. Y. (1995). Complexity properties of steady-state rare events simulation in queueing models. Advances in Queueing: Theory, Methods and Open Problems, CRC Press, 429-462. Bucklew, J. A. (2004). Introduction to Rare Event Simulation. Springer- Verlag: New York. Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedas- ticity. Journal of Econometrics, 31, 307-327. Bollerslev, T., Chou, R. Y., and Kroner, K. F. (1992). ARCH modeling in nance: a selective review of the theory and empirical evidence. Econometrics, 52, 5-59. Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis Forecasting and Control. Holden-Day: San Francisco. Burmeister, E., and Wall, K. D. (1982). Kalman ltering estimation of unobserved rational expections with an application to the German hyperin ation. Journal of Econometrics, 4,147-160. Chang, Y. P., Hung, M. C. and Wu, Y. F. (2003). Nonparametric estima- tion for risk in Value-at-Risk estimator. Communications In Statistics: Simulation and Computation, 32, 1041-1064. Duffie, D. and Pan, J. (1997). An Overview of Value at Risk. Journal of Derivative, 7, 7-49. Dunsmuir, W. (1979). A central limit theorem for parameter estimation in stationary time series and its applications to models for a signal observed white noise. Annals of Statistics, 7, 490-506. Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7,23-55. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom in ation. Econometrica, 50, 987-1008. Fuh, C. D. (2004). E cient likelihood estimation in state space models. Technical Report, No. C-4. Institute of Statistical Science, Academia Sinica. Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2000). Variance reduction techniques for estimating Value-at-Risk. Management Science,46,1349- 1364. Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2002). Portfolio Value-at-Risk with heavy tailed risk factors. Mathematical Finance, 12, 239-270. Glynn, P. W. and Iglehart, D. L. (1989). Importance sampling for stochastic simulations. Management Science, 35, 1367-1391. Hall, P. and Yao Q. (2003). Inference in ARCH and GARCH models with heavy-tailed errors. Econometrica, 71, 285-317. Harvey, A. C. (1989). Forecasting, Structural Models and The Kalman Filter. Cambridge University Press, Cambridge. Harvey, A. C., Ruiz, E., and Shephard. N. G. (1992). Multivariate stochastic variance models. Review of Economic Studies, 61, 247-264. Hendricks, D. (1996). Evaluation of Value-at-Risk models using historical data. Federal Reserve Bank of New York Economic Policy Review, April, 39-69. Hull, J. and White, A. (1998). Incorporating volatility updating into the historical simulation method for Value-at-Risk. Journal of Risk, 1, 5-19. Jacquier, E., Polson, N. G., and Rossi, P. E. (1994). Bayesian analysis of stochastic volatility models. Journal of Business and Economic Statistics, 12, 371-389. Jorion, P. (2002). Value at Risk: The New Benchmark for Managing Financial Risk. McGraw-Hill: New York. Ljung, L., and Caines, P. E. (1979). Asymptotic normality of prediction error estimators for approximate system models. Stochastics, 3, 29-46. Miguel, J. A. and Olave P. (1999a). Bootstrapping forecast intervals in ARCH models. Test, 8, 345-364. Migue, J. A. and Olave, P. (1999b). Forecast intervals in ARCH models: bootstrap versus parametric methods. Applied Economics Letters, 6, 323-327. Morgan, J. P. (1996). RiskMetrics Technical Document, Forth edition, New York. Ridder, T. (1997). Basic of statistical VaR-estimation. In: Bol, D., Nakhaeizadeh, G., Vollmer, K. H., eds. Risk Measurement, Econo- metrics and Neural Networks.Heidelberg: Physica-Verlag. 161-187. Ross, S. M. (2002). Simulation. Academic Press: San Diego. Ruiz, E. (1994). Quasi-maximum likelihood estimation of stochastic volatility models. Journal of Econometrics, 63, 289-306. Sen, P. K. and Singer, J. M. (1993). Large Sample Methods in Statistics: An Introduction with Applications. Chapman & Hall: New York. Shephard N. (1993). Fitting nonlinear time-series models with applications to stochastic variance models. Journal of Applied Econometrics, 8, 135-152. So, M. K. P., Li, W. K., and Lam, K. (1997). Multivariate modelling of the autoregressive random variance process. Journal of Time Series Analysis, 18, 429-446. Stoffer, D. S. and Wall, K. D. (1991). Bootstrapping state-space models: Gaussian maximum likelihood estimation and the Kalman lter. Journal of the American Statistical Association, 86, 1024-1033. Taylor, S. J. (1982). Financial returns modelled by the product of two stochastic process, a study of daily sugar price 1961-79. In Time Series Analysis: Theory and Practice 1 (ed. O. D. Anderson). Amsterdam: North-Holland. 203-226. Taylor, S. J. (1994). Modelling stochastic volatility. Mathematical Finance, 4, 183-204. Thombs, L. A. and Schucany, W. R. (1990). Bootstrap prediction intervals for autoregression. Journal of the American Statistical Association, 85, 486-492. Tsay, R. S. (2002). Analysis of Financial Time Series. John Wiley. Wall, K. D., and Sto er, D. S. (2002). A state space model to bootstrap- ping conditional forecasts in ARMA models. Journal of Time Series Analysis, 23, 733-751. Wong, C. M. and So, M. K. P. (2003). On conditional moments of GARCH models, with applications to multiple period value at risk estimation. Statistica Sinica, 13, 1015-1044.
|