(18.207.253.100) 您好!臺灣時間:2021/05/06 08:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳信伊
研究生(外文):Hsin-Yi Chen
論文名稱:星狀座標之軸排列於群聚視覺化之應用
論文名稱(外文):Axes Arrangement in Star Coordinates for Numerical Data Visualization
指導教授:張嘉惠張嘉惠引用關係
指導教授(外文):Chia-Hui Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:51
中文關鍵詞:遺傳演算法星狀座標多維度資訊視覺化
外文關鍵詞:Genetic AlgorithmStar CoordinatesMultidimensionInformation Visualization
相關次數:
  • 被引用被引用:6
  • 點閱點閱:167
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:2
視覺化方法使用圖形來表達資料所包含的資訊,因為以圖解的方式比資料本身更能讓人一目了然。Star Coordinates是一種以座標軸為基礎的多維度資料視覺化方法,將每一筆資料投影到二維平面上的一個點,讓使用者在資料探勘的初期得到資料的概觀。本篇論文提出一種自動化座標軸排列方法應用於Star Coordinates,擷取多維度資料中各屬性的相關性,利用遺傳演算法計算出一組最佳化之座標軸排列方式,藉此調整Star Coordinates中座標軸的排列順序與夾角,增強資料的群聚現象以改善Star Coordinates視覺化的結果,並提供自動播放工具,呈現一系列經過座標軸排列後的圖形,使用者可以在觀看圖形的過程中獲得資料隱藏的資訊。透過自動化的座標軸排列,使用者可以省略複雜的座標軸操作,並藉由視覺化圖形分析多個維度之間的共同關係,觀看資料之間群聚的趨勢,並檢視資料分佈中的異常狀況,掌握資料的主要特徵。
第1章 緒論.....................................................................................................................................- 1 -
1.1 本篇論文的貢獻........................................................................................................................- 3 -
1.2 論文架構...................................................................................................................................- 4 -
第2章 相關研究..............................................................................................................................- 5 -
2.1 降低維度的方法........................................................................................................................- 6 -
2.2 高維度資料視覺化方法............................................................................................................- 9 -
2.3 比較與討論..............................................................................................................................- 18 -
第3章 系統架構............................................................................................................................- 20 -
3.1 座標軸排列(AXES ARRANGEMENT)...................................................................................- 21 -
3.1.1 遺傳演算法(Genetic Algorithm)簡介.............................................................- 22 -
3.1.2 編碼(Encoding)...............................................................................................- 24 -
3.1.3 適應值的評估(Fitness evaluation)..................................................................- 25 -
3.1.4 交配與突變運算...................................................................................................- 29 -
3.2 自動播放(AUTO PLAY).......................................................................................................- 32 -
第4章 實驗結果與討論................................................................................................................- 34 -
4.1 座標軸排列的實驗..................................................................................................................- 35 -
4.2 評估方法.................................................................................................................................- 41 -
4.3 執行時間的評估......................................................................................................................- 42 -
4.4 自動播放.................................................................................................................................- 43 -
4.5 實驗討論.................................................................................................................................- 46 -
第5章 結論...................................................................................................................................- 47 -
參考文獻..............................................................................................................................................- 49 -
[1]. E. Kandogan: “Visualizing Multi-dimensional Clusters, Trends, and Outliers using Star Coordinates”, In Proc. of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pages 107-116, 2001.
[2]. G.. Dunn and B. Everitt: “An Introduction to Mathematical Taxonomy”, Cambridge University Press Cambridge, MA, 1982.
[3]. H. H. Harman: “Modern Factor Analysis”, University of Chicago Press, 1967.
[4]. R. N. Shepard, A. K. Romney, and S. B. Nerlove: “Multidimensional Scaling”, Seminar Press New York, 1972.
[5]. C. Faloutsos and K. Lin: “Fastmap: A fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Datasets”, In Proc. of ACM SIGMOD Int. Conf. on Management of Data, 1995.
[6]. M. Ankerst: “Visual Data Mining”, Ludwig Maximilians Universität, München, 2001.
[7]. D. A. Keim and H. P. Kriegel: “Visualization Techniques for Mining Large Databases, A Comparison”, Transactions on Knowledge and Data Engineering, Special Issue on Data Mining, 1996.
[8]. D. A. Keim: “Technique Report of Data Mining”. Information for Site Planning, 2002.
[9]. D. A. Keim: “Designing pixel-oriented visualization techniques: Theory and applications”. Transaction Visualization Computer Graphic, 2000.
[10]. D. A. Keim, H. P. Kriegel, and M. Ankerst: “Recursive Pattern: A technique for visualizing very large amounts of data”. In Proc. of Visualization 95, Atlanta, GA, pages 279–286, 1995.
[11]. M. Ankerst, D. A. Keim, and H. P. Kriegel: “Circle Segments: A Technique for Visually Exploring Large Multidimensional Data Sets”. In Proc. of Visualization 96, Hot Topic Session, San Francisco, 1996.
[12]. D. Hand, H. Mannilla, and P. Smyth: “Principles of Data Mining”, MIT Press, Cambridge, Massachussets, 2001.
[13]. M. O. Ward: “XmdvTool : Integrating multiple methods for visualizing multivariate data”. In Proc. of Visualization 94, Washington, DC, pages 326–336, 1994.
[14]. H. Chernoff: “The Use of Faces to Represent Points in k-Dimensional Space Graphically”. Journal of the American Statistical Association, Vol. 68, pages 361-368, 1973.
[15]. M. P. Consens and A. O. Mendelzon: “Hy+: A Hygraph-based Query and Visualization System”, In Proc. of the ACM SIGMOD on Management of Data, 1993.
[16]. R. A. Becker, S. G. Eick, and G. J. Wills: “Visualizing Network Data”, IEEE Transactions on Visualizations and Graphics, 1995.
[17]. R. J. Hendley, N. S. Drew, A. M. Wood, R. Beale: “Narcissus: Visualizing Information”. In Proc. of Int. Sysmp. On IV, Atlanta, GA, pages 90-94, 1995.
[18]. S. Feiner and C. Beshers: “Visualizing n-Dimensional Virtual Worlds with n-Vision”, IEEE Computer Graphics, 1990.
[19]. J. LeBlanc, M. O. Ward, and N. Wittels: “Exploring N-Dimensional Databases”, In Proc. of Visualization ‘90, 1990.
[20]. B. Shneiderman: “Tree Visualization with Treemaps: A 2D Space-Filling Approach”, ACM Transactions on Graphics, 1992.
[21]. A. Inselberg and B. Dimsdale: “Parallel coordinates: a tool for visualizing multi-dimensional geometry”. In Proc. of the First IEEE Conference on Visualization, 1990.
[22]. K. Eser: “Visualizing Multi-dimensional Clusters, Trends, and Outliers using Star Coordinates”. In Proc. of the seventh ACM SIGKDD International Conference on Knowledge Discovery in Data, pages 107–116, 2001.
[23]. T. Christian; James A. and Heidrun S.: “Axes-Based Visualization with Radial Layouts”. In Proc. of the 2004 ACM Symposium on Applied Computing, 2004.
[24]. J. H. Holland: “Adaptation in Natural and Artificial Systems”, Ann Arbor: Univ. of Michigan Press, 1975.
[25]. D. Michie, D.J. Spiegelhalter and C.C. Taylor: “Machine Learning, Neural and Statistical Classification”. Ellis Horwood, 1994.
[26]. R. A. Fisher: “The use of multiple measurements in taxonomic problems”, Annual Eugenics, vol. 7, Part II, pages 179-188, 1936.
[27]. The data has been taken from the UCI Repository of Machine Learning Databases at ftp://ftp.ics.uci.edu/pub/machine-learning-databases.
[28]. T. Soon and M. Kwan: “StarClass: Interactive Visual Classification Using Star Coordinates” In Proc. of the 3rd SLAM International Conference on Data Mining, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔