(3.226.72.118) 您好!臺灣時間:2021/05/13 07:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張浩維
研究生(外文):Hao-Wei Chang
論文名稱:磷化銦/砷化銦鎵光二極體及異質接面雙極性電晶體積體化光接收器之設計與製作
論文名稱(外文):Design and Fabrication of InP/InGaAs p-i-n/HBT Monolithic Photoreceiver
指導教授:辛裕明
指導教授(外文):Yue-Ming Hsin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:69
中文關鍵詞:光檢器砷化銦鎵磷化銦1.55微米波長光接收器積體化轉阻放大器光二極體異質接面雙極性電晶體
外文關鍵詞:ingaasmonolithic2.5gb/s10gb/shbtphotoreceivertiapin1.55umtransimpedancephotodetector1550nminp
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對PIN光二極體和異質接面雙極性電晶體作整合,完成一積體化的光接收器,應用的光波長為1.55 um。
為了在同一晶片上同時完成PIN光二極體和異質接面雙極性電晶體二種元件的製作,磊晶結構的選擇就顯得特別重要。本論文中乃是採用由OEPIC公司以分子束磊晶方式成長的磷化銦/砷化銦鎵單一異質接面雙極性電晶體晶片。為了同時顧及PIN光二極體和異質接面雙極性電晶體二種元件的特性表現,採用集極厚度為5000 Å。
製作完成的異質接面雙極性電晶體射極面積為3x12 μm2的非自動對準小元件截止頻率fT為70.5 GHz。射極面積為3x6 μm2的自動對準小元件截止頻率fT為80.5 GHz。射極面積為3x3 μm2自動對準小元件截止頻率fT為81.5 GHz。量測由射極面積為3x12 μm2非自動對準小元件所組成的轉阻放大器,其中一級轉阻放大器所得到的ZT,其3 dB頻寬為11.156 GHz,而三級轉阻放大器所得到的ZT,其3 dB頻寬為7.05 GHz。
製作完成的PIN光二極體,其照光面積為22x22 μm2,在光波長為1.55 μm的照光下,可以得到操作頻率10 Gb/s的眼圖並符合SONET OC-192規格。
由異質接面雙極性電晶體射極面積為3x6 μm2自動對準元件所組成的一級轉阻放大器外接頻寬為65 GHz光檢器時,可以得到操作頻率10 Gb/s的眼圖,並符合SONET OC-192的規格。驗証了未來PIN光二極體結合一級轉阻放大器時其頻寬可達10Gb/s的可能性。
由異質接面雙極性電晶體射極面積為3x12 μm2的非自動對準和自動對準元件所組成之二級轉阻放大器積體化光接收器皆可以得到操作頻率2.5 Gb/s的眼圖,並符合SONET OC-48的規格。射極面積為3x12 μm2的非自動對準元件所組成之三級轉阻放大器積體化光接收器亦可以得到操作頻率在2.5 Gb/s的眼圖。因此在本論文中成功地完成了符合SONET OC-48規格的積體化光接收器製作。
頁次
第一章 導論 1
1.1 研究動機 1
1.2 論文架構 6
第二章 積體化光接收器設計流程與製程步驟 7
2.1 簡介 7
2.2 積體化光接收器設計流程 7
2.3 積體化光接收器製程步驟 12
第三章 磷化銦/砷化銦鎵異質接面雙極性電晶體與轉阻放大器特性量測與分析 24
3.1 簡介 24
3.2 異質接面雙極性電晶體元件佈局 24
3.3 異質接面雙極性電晶體直流與高頻特性量測與分析 27
3.3.1 異質接面雙極性電晶體大元件直流特性量測 31
3.3.2 異質接面雙極性電晶體小元件直流特性量測 32
3.3.3 異質接面雙極性電晶體小元件高頻分析 36
3.4 轉阻放大器特性量測與分析 39
3.4.1 一級轉阻放大器量測與分析 42
3.4.2 二級轉阻放大器量測與分析 45
3.4.3 三級轉阻放大器量測與分析 47
第四章 PIN光二極體特性量測與分析 50
4.1 簡介 50
4.2 PIN光二極體元件佈局考量 50
4.3 PIN光二極體特性量測 52
4.3.1 PIN光二極體直流分析 53
4.3.2 PIN光二極體高頻分析 54
第五章 積體化光接收器的製作 55
5.1 簡介 55
5.2 一級轉阻放大器結合外部光檢器量測與分析 55
5.3 二級轉阻放大器所組成的積體化光接收器量測與分析 58
5.4 三級轉阻放大器所組成的積體化光接收器量測與分析 62
第六章 結論 65
參考文獻 67
[1] 楊素華,陳憶婷,簡昕慧,張詩意,楊筑閔,“光纖通訊技術發展現況”科學發展月刊,第29卷,第12期,879-883頁,民國九十年
[2]R. Swoboda and H. Zimmermann, “2.5 Gbit/s silicon receiver OEIC with large diameter photodiode,” Electron. Lett., vol. 40, no. 8, pp. 505-507, Apr. 2004
[3]J. Cowles, A. L. Gutierrez-Aitken, P. Bhattacharya, and G. I. Haddad, “7.1 GHz Bandwidth Monolithically Integrated In0.53Ga0.47As/ In0.52Al0.48As PIN-HBT Transimpedance Photoreceiver,” IEEE Photon. Technol. Lett., vol. 6, no. 8, pp. 963-965, Aug. 1994
[4]Y. Akahori, Y. Akatsu, A. Kohzen, and J. Yoshida, “10-Gb/s High-Speed Monolithically Integrated Photoreceiver Using InGaAs p-i-n PD and Planar Doped InAlAs/InGaAs HEMT’s,” IEEE Photon. Technol. Lett., vol. 4, no. 7, pp. 754-756, July 1992
[5]L.M. Lunardi, S. Chandrasekhar, A.H. Gnauck, C.A Burrus, A.G. Dentai, and J.M.M. Rios, “15 Gbit/s pin/HBT optoelectronic integrated photoreceiver module realised using MOVPE material,” IEEE Electron. Lett., vol. 31, no. 14, pp. 1185-1186, July 1995
[6]Y. Zhang, C.S. Whelan, R.Leoni, III, P.F. Marsh, W.E. Hoke, J.B. Hunt, C.M. Laighton, and T.E. Kazior, “40-Gbit/s OEIC on GaAs Substrate Through Metamorphic Buffer Technology,” IEEE Electron Device Lett., vol. 24, no. 9, pp. 529-531, Sep. 2003
[7]M. Leich, V. Hurm, J. Sohn, T. Feltgen, W. Bronner, K. Kohler, H. Walcher, J. Rosenzweig and M. Schlechtweg, “65 GHz bandwidth optical receiver combining a flip-chip mounted waveguide photodiode and GaAs-based HEMT distributed amplifier,” Electron. Lett., vol. 38, no. 25, pp. 1706-1707, Dec. 2002
[8]D. Huber, M. Bitter, T. Morf, C. Bergamaschi, H. Melchior and H. Jackel, “46GHz bandwidth monolithic InP/InGaAs pin/SHBT photoreceiver,” Electron. Lett., vol. 35, no. 1, pp. 40-41, Jan. 1999
[9]L. M. Lunardi, S. Chandrasekhar, A. H. Gnauck, C. A. Burrus, R. A. Hamm, J. W. Sulhoff, and J. L. Zyskind, “A 12-Gb/s High-Performance, High-Sensitivity Monolithic p-i-n/HBT Photoreceiver Module for Long-Wavelength Transmission Systems,” IEEE Photon. Technol. Lett., vol. 7, no. 2, pp. 182-184, Feb. 1995
[10]Hisao Shigematsu, Masaru Sato, Toshihide Suzuki, Tsuyoshi Takahashi, Kenji Imanishi, Naoki Hara, Hiroaki Ohnishi, and Yuu Watanabe, “A 49-GHz Preamplifier With a Transimpedance Gain of 52 dBΩ Using InP HEMTs,” IEEE J. Solid-State Circuits, vol. 36, no. 9, pp. 1309-1313, Sep. 2001
[11]Eiichi Sano, Mikio Yoneyama, Hiroki Nakajima and Yutaka Matsuoka, “A Monolithically Integrated Photoreceiver Compatible With InP/InGaAs HBT Fabrication Process,” J. Lightware Technology, vol. 12, no. 4, pp. 638-643, Apr. 1994
[12]S. Chandrasekhar, B. C. Johnson, M. Bonnemason, E. Tokumitsu, A. H. Gnauck, A. G. Dentai, C. H. Joyner, J. S. Perino, G. J. Qua and E. M. Monberg, “An InP/InGaAs p-i-n/HBT Monolithic Transimpedance Photoreceiver,” IEEE Photon. Technol. Lett., vol. 2, no. 7, pp. 505-506, July 1990
[13]Kyounghoon Yang, Augusto L. Gutierrez-Aitken, Xiangkun Zhang, George I. Haddad, and Pallab Bhattacharya, “Design, Modeling, and Characterization of Monolithically Integrated InP-Based (1.55 mm) High-Speed (24 Gb/s) p-i-n/HBT Front-End Photoreceivers,” J. Lightware Technology, vol. 14, no. 8, pp. 1831-1839, Aug. 1996
[14]Bangkeun Lee, and Kyounghoon Yang, “InP-based monolithic RFPD/HBT photoreceivers integrated with on-chip InP V-grooves,” Electron. Lett., vol. 39, no. 16, pp. 1203-1204, Aug. 2003
[15]D. Huber, R. Bauknecht, C. Bergamaschi, M. Bitter, A. Huber, T. Morf, A. Neiger, M. Rohner, I. Schnyder, V. Schwarz, and H. Jackel, “InP-InGaAs Single HBT Technology for Photoreceiver OEIC’s at 40 Gb/s and Beyond,” J. Lightware Technology, vol. 18, no. 7, pp. 992-1000, July 2000
[16]梁虔碩,“AlGaAs/GaAs PIN/HBT 光檢器/轉阻放大器之積體化光接收器”碩士論文,國立中央大學,民國九十年
[17]洪志明,“高速磷化銦異質接面雙載子電晶體之研製”碩士論文,國立中央大學,民國九十二年
[18]Chong-Long Ho, Meng-Chyi Wu, Wen-Jeng Ho, and Jy-Wang Liaw, “Edge-Coupled InGaAs P-I-N Photodiode with a Pseudowindow,” IEEE Trans. Electron Devices, vol. 47, no. 11, pp. 2088-2092, Nov. 2000
[19]H. Fukano, A. Kozen, and O. Nakajima, “Edge-illuminated refracting-facet photodiode with high responsivity and low-operation voltage,” Electron. Lett., vol. 32, no. 25, pp. 2346-2348, Dec. 1996
[20]Martin Bitter, Raimond Bauknecht, Werner Hunziker, and Hans Melchior, “Monolithic InGaAs-InP p-i-n/HBT 40-Gb/s Optical Receiver Module,” IEEE Photon. Technol. Lett., vol. 12, no. 1, pp. 74-76, Jan. 2000
[21]S. Pradhan, P. Bhattacharya, and W.K. Liu, “Monolithically integrated 1.55 mm photoreceiver-laser driver optoelectronic integrated circuit,” Electron. Lett., vol. 38, no. 17, pp. 987-989, Aug. 2002
[22]Nikhil Ranjan Das, and M. Jamal Deen, “On the Performance Analysis and Design of an Integrated Front-End PIN/HBT Photoreceiver,” J. Quantum Electron., vol. 40, no. 1, pp. 78-91, Jan. 2004
[23]黃凡修,“10Gb/s光纖通訊系統傳送/接收電路模擬與實作”碩士論文,國立中央大學,民國九十一年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔