(3.238.96.184) 您好!臺灣時間:2021/05/12 23:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李珠串
研究生(外文):Chu-Chuan Lee
論文名稱:互動/直播/預錄式網路視訊服務之整合式端點對端點遞送品質控制
論文名稱(外文):Integrated End-to-End Quality Control for Delivering Interactive/Live/Pre-stored Videos over Networks
指導教授:張寶基
指導教授(外文):Pao-Chi Chang
學位類別:博士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:97
中文關鍵詞:封包封裝訊務平順無線網路訊務預測資源管理
外文關鍵詞:wireless networkresource managementtraffic smoothingpacketizationtraffic predicting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
在網際網路盛行的今天,網路上所傳送的資料內容已從傳統的檔案與語音資料擴展到多樣化的視訊內容。許多網路設備均已具備強大的運算與資料排程處理能力以應付龐大的視訊流量。然而由於視訊串流具有變動位元率 (variable bit rate) 的特性,這些網路設備亦需及時而充分地掌握視訊串流的流量特性,方能有效提升頻寬資源的管理效率。雖然啟動視訊來源端的位元率控制 (source rate control) 機制可以降低長時間 (long term) 的位元率變化,但是就短時間 (short term) 的區間而言,視訊串流仍然具有明顯的變動位元率現象,進而導致網路端的頻寬資源管理與遞送服務品質管理複雜化。因此,一個能夠有效地降低視訊串流的位元率變動以及能夠及時而準確地將視訊串流的流量特性通知網路端的機制,對於頻寬資源管理而言十分地重要。另一方面,為了提升視訊資料在無線網路中的錯誤回復 (error resilience) 能力,許多視訊編碼標準均提供再同步註記 (Resynchronization Marking) 的方法。然而,在使用再同步註記方法時,若未同時將無線網路目前的傳送品質一併考慮,則無線網路的有效頻寬利用率將會因為再同步註記時間區間的選用不當而下降。此現象在封包檔頭負荷增加或無線頻道錯誤位元率增加時更為明顯。
因此,本論文針對互動/直播/預錄式網路視訊服務,提出一套整合式端點對端點遞送品質控制系統 (IE-VDS) 來有效地解決上述的問題。IE-VDS由四個部份組成:最佳封包長度決定機制 (OPDM)、ρ-域之長跨距訊務預測機制 (ρ-LSP)、智慧型線上訊務平順化機制 (ON-ITS)、確定式離線訊務平順化機制 (OFF-DTS)。OPDM提出一個可以根據無線網路的傳送品質現況而決定最佳封包長度的封閉解 (closed form)。利用此封閉解所得到的結果可以作為視訊編碼端決定再同步註記時間區間及封裝視訊資料時的最佳依據,並且可以使得無線網路有效頻寬利用率最大化。為了有效執行互動與直播視訊訊務的平順化工作,ON-ITS首先利用ρ-LSP進行視訊訊務的預測。ρ-LSP係利用存在於畫面位元率以及非零量化係數與非零移動向量個數之間的線性關係進行準確的訊務預測。在結合ρ-LSP之後,ON-ITS提出一個調適性視窗尺寸決定機制來解決視窗尺寸大小與播放延遲之間的取捨問題,進一步降低視訊串流的位元率變動,並且及時而準確地將視訊串流的流量特性通知網路端。當視訊串流傳送於蜂巢式行動網路時,有限的終端設備記憶體容量往往會限制視訊訊務平順化的效能,尤其是希望利用確定性遞送模式 (deterministic service model) 來達到遞送服務品質的保證時更為明顯。為了解決此問題,OFF-DTS將訊務平順化的觀念納入確定性遞送模式中,並且提出一個智慧型視訊畫面捨棄機制,使得視訊串流在蜂巢式行動網路上的傳送可以同時符合終端設備記憶體的容量限制以及確定性遞送模式的流量特性要求。經由分析與模擬,最佳封包長度封閉解的準確性與有效性獲得充分的驗證。此成果可以同時有效地提升無線網路的頻寬使用率以及增加視訊資料的錯誤回復能力。相同地,透過模擬的結果,ON-ITS在不增加播放延遲的情況下,能夠有效地降低視訊串流的位元率變動,減少與網路端的頻寬協商次數,進而有效地減緩網路設備的處裡負荷。更進一步地,由模擬的數據發現,利用OFF-DTS 可以有效地降低視訊串流在蜂巢式行動網路的峰值頻寬需求以及終端設備的記憶體容量需求。
With improved capabilities of network infrastructures and video compression techniques, rich multimedia applications such as video conferencing, live broadcasting news and streaming contents are dramatically boosted to clients. Many equipment venders provide robust core/access routers and L2/L3 switches for handling the huge multimedia traffics. Yet Variable-Bit-Rate (VBR) compressed video exhibits significant rate variability, even when the rate is computed over time intervals as large as several minutes. This burstiness complicates the design of efficient real-time storage, retrieval, and transport mechanisms capable of achieving high resource utilization. Therefore, a mechanism that can effectively reduce the rate variability of video data and timely send the accurate traffic information of video stream to network facilities is very important for effective resource management. On the other hand, the Resynchronization Marking (RM) scheme proposed in most video coding standards such as MPEG-4 is generally used to improve the error resilience capability of video data in the wireless network. However, if the RM scheme at the application layer is executed independently, the effective throughput of WLAN may be decreased. This phenomenon is particularly true if the multi-layer header overhead increases or the wireless channel condition changes obviously.
Therefore, this dissertation proposes an Integrated End-to-End Video Delivery System (IE-VDS) that can provide robust and efficient delivery quality for pre-stored, live broadcasting and real-time videos over networks. IE-VDS includes four major parts, the Optimal Packet size Determination Mechanism (OPDM), the ρ-domain Long-Span Predictor (ρ-LSP), the Intelligent ONline Traffic Smoothing mechanism (ON-ITS), and the Deterministic OFFline Traffic Smoothing mechanism (OFF-DTS). OPDM proposes a simple yet robust closed-form that can determine accurately and timely the optimal video payload length at the video sender based on the current wireless channel condition. Whenever the optimal payload length that can maximize the WLAN throughput is determined, the RM scheme adopts the optimal payload length to packetize the video data. For executing efficient online traffic smoothing, ρ-LSP predicts the bitrate of future frames with high accuracy by utilizing the linear relationship between the cumulated frame bitrates and the total number of nonzero motion vectors and nonzero quantized coefficients of encoded frames. ON-ITS
then proposes an intelligent online traffic smoothing mechanism that integrates the proposed adaptive window size method with ρ-LSP to improve the flexibility and performance of online smoothing for live broadcasting and real-time video applications. On the other hand, for delivering pre-stored video contents with deterministic QoS guarantees, OFF-DTS integrates proper traffic smoothing operations with the traditional deterministic traffic modeling scheme to reduce the playback buffer demand and data rate variation. Herein the limitation of playback buffer space, the network delay jitter, the processing load of resource management, and the QoS guarantee are considered in the proposed mechanism.
Analytical and simulation results verify the accuracy and effectiveness of the proposed closed-form in OPDM. The contribution effectively improves the WLAN throughput and enhances the error resilience effect of scalable video data simultaneously. From simulation results, ON-ITS effectively reduces the transmission rate variation and the peak rate demand of real-time and live video services while remaining a low playback delay. Moreover, OFF-DTS effectively satisfies the situation of insufficient playback buffer space in mobile clients while still maintaining the advantages of deterministic services for pre-stored videos.
CONTENTS
CHAPTER 1. INTRODUCTION.......................................................................................................................1
CHAPTER 2. BACKGROUNDS AND RELATED WORKS...........................................................................7
2-1. RESILIENT COMPRESSED VIDEOS...............................................................................................................7
2-1-1. Resynchronization...............................................................................................................................8
2-1-2. Data partitioning.................................................................................................................................9
2-1-3. Reversible variable-length codes.......................................................................................................10
2-1-4. Header extension code.......................................................................................................................12
2-2. WIRELESS LOCAL AREA NETWORKS.........................................................................................................12
2-3. END-TO-END NEGOTIATION PROTOCOLS FOR VIDEO SERVICES..............................................................18
2-3-1. RTP/RTCP.........................................................................................................................................18
2-3-2. RSVP.................................................................................................................................................19
2-3-3. ATM...................................................................................................................................................21
2-4. IPV6 OVER WLAN...................................................................................................................................22
2-5. TRAFFIC PREDICTION FOR VIDEO SERVICES............................................................................................24
2-5-1. LMS prediction..................................................................................................................................24
2-5-2. ρ-domain rate model..........................................................................................................................27
2-6. TRAFFIC SMOOTHING FOR VIDEO SERVICES............................................................................................29
2-6-1. Offline traffic smoothing....................................................................................................................29
2-6-2. Online traffic smoothing....................................................................................................................31
2-7. DETERMINISTIC TRAFFIC MODELING.......................................................................................................33
CHAPTER 3. DETERMINISTIC OFFLINE TRAFFIC SMOOTHING.....................................................36
3-1. CONSTRUCT BOUNDS...............................................................................................................................37
3-2. EXECUTE LINEAR CONCAVE UPPER APPROXIMATION..............................................................................38
3-3. ACCOMMODATE THE DELAY JITTER.........................................................................................................39
3-4. SMART VIDEO FRAME SKIPPING...............................................................................................................42
3-5. MODEL THE REGULATED TRAFFIC WITH WORST-CASE DESCRIPTION.....................................................45
3-6. CALL ADMISSION TEST AND RATE RENEGOTIATION.................................................................................46
3-7. SIMULATION RESULTS AND DISCUSSIONS.................................................................................................47
CHAPTER 4. LONG-SPAN TRAFFIC PREDICTION..................................................................................55
4-1. ρ-DOMAIN FRAME-BASED PREDICTOR...................................................................................................55
4-2. SIMULATION RESULTS AND DISCUSSIONS.................................................................................................58
CHAPTER 5. INTELLIGENT ONLINE TRAFFIC SMOOTHING............................................................60
5-1. INTEGRATION OF ONLINE SMOOTHING AND TRAFFIC PREDICTION.........................................................60
5-2. SIMULATION RESULTS AND DISCUSSIONS.................................................................................................66
CHAPTER 6. OPTIMAL PACKET SIZE DETERMINATION IN WLANS...............................................70
6-1. THEORETICAL ANALYSES OF OPTIMAL VIDEO PACKET SIZE....................................................................70
6-2. ACCOMMODATION OF VARIABLE HEADER OVERHEAD.............................................................................75
6-3. NUMERICAL RESULTS AND DISCUSSIONS..................................................................................................77
CHAPTER 7. CONCLUSIONS.......................................................................................................................88
REFERENCES..................................................................................................................................................90
[1] K.A. Hua, M.A. Tantaoui, and W. Tavanapong, “Video delivery technologies for large-scale deployment of multimedia applications,” Proc. IEEE, vol. 92, pp. 1439-1451, Sep. 2004.
[2] S.M. Faccin, P. Lalwaney, and B. Patil, “IP multimedia services: analysis of mobile IP and SIP interactions in 3G networks,” IEEE Commun. Mag., vol. 42, pp. 113-120, Jan. 2004.
[3] W. Burleson, S. Thampuran, and N. Ramaswamy, “Multimedia systems: enabling computer engineering education,” in Proc. Frontiers in Education, Nov. 2002, pp. T2F1-6.
[4] P. Schmitz, “Multimedia goes corporate,” IEEE Multimedia, vol. 9, pp. 18-21, July-Sept. 2002.
[5] H. Song and C.C. Jay Kuo, “A region-based H.263+ codec and its rate control for low VBR video,” IEEE Trans. Multimedia, vol. 6, pp. 489-500, June 2004.
[6] Z. Chen and K. N. Ngan, “Object-based rate control for MPEG-4 video object coding,” in Proc. ISCAS’O4, pp. III-973-6, May 2004.
[7] I. Dalgic and F. A. Tobagi, “Performance evaluation of ATM networks carrying constant and variable bit-rate video traffic,” IEEE J. Select. Areas Commun., vol. 15, Aug. 1997.
[8] I. M. Pao and M. T. Sun, “Encoding stored video for streaming applications”, IEEE Trans. Circuit Syst. for Video Technol., vol. 11, pp. 199-209, Feb. 2001.
[9] C. D. Iskander and P. T. Mathiopoulos, “Online smoothing of VBR H.263 video for the CDMA2000 and IS-95B uplinks,” IEEE Trans. Multimedia, vol. 6, pp. 647-658, Aug. 2004.
[10] S. Hartwig, M. Luck, J. Aaltonen, R. Serafat, and W. Theimer, Mobile multimedia-challenges and opportunities, IEEE Trans. Consumer Electron., vol. 46, pp. 1167-1178, Nov. 2000.
[11] H. Tomimori and Y. Nakamoto, “An efficient and flexible access control framework for Java program in mobile terminals,” in Proc. Distributed computing systems workshops, July 2002, pp. 777-782.
[12] V. Frost and B.Melamed, “Traffic modeling for telecommunications networks,” IEEE Commun. Mag., vol. 32, no. 3, pp. 70-81, Mar. 1994.
[13] S. Recker, W. Geisselhardt, and I. Wolff, “Dimensioning of traffic engineered trunks for deterministic service guarantees in mobile data networks,” in Porc. IEEE ICC’03, May 2003, pp. 1669-1674.
[14] D. Wu, Y.T. Hou, W. Zhu, T.H. Chiang, Y.Q. Zhang and H.J. Chao, “On end-to-end architecture for transporting MPEG-4 video over the Internet,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 923-941, Sept. 2000.
[15] P. Cocquet, “IPv6 on DSL : the best way to develop always-on services,” Proc. IEEE, vol. 92, pp. 1400-1407, Sep. 2004.
[16] R. Talluri and T. Instruments, “Error-resilient video coding in the ISO MPEG-4 standard,” IEEE Commun. Mag., vol. 36, pp. 112-119, June 1998.
[17] ITU-T Rec. H.320, “Narrowband Visual Telephone Systems and Terminal Equipment,” Mar. 1996.
[18] ITU-T Rec. H.263, “Video Coding for Low Bitrate Communication,” ITU-T SG 15, Oct. 1995.
[19] K. Rijkse, “ITU Standardization of Very Low Bitrate Video Coding Algorithms,” Sig. Processing: Image Commun., vol. 7, nos. 4-6, Nov. 1995, pp. 553-65.
[20] Takashima, Wada, and Murakami, “Reversible Variable Length Codes,” IEEE Trans. Commun., vol. 43, no. 2/3/4, Feb./Mar./Apr. 1995, pp. 158-62.
[21] G. Wen and J. Villasenor, “A Class of Reversible Variable Length Codes for robust Image and Video Coding,” in Proc. ICIP ’97, Santa Barbara, CA, vol. 2, Oct. 1997, pp. 65-68.
[22] J. H. Yeh, J. C. Chen, and C. C. Lee, “WLAN standards,” IEEE Potentials, pp. 16-22, Oct.-Nov. 2003.
[23] M. Schwartz, “Telecommunication networks: protocols, modeling and analysis,” Addision-Wesley, pp. 119-135, Mar. 1987.
[24] E. Modiano, “An adaptive algorithm for optimizing the packet size used in wireless ARQ protocols,” Wireless Network, pp. 279-286, May 1999.
[25] D. Wu, Y.T. Hou, W. Zhu, T.H. Chiang, Y.Q. Zhang and H.J. Chao, “On end-to-end architecture for transporting MPEG-4 video over the Internet,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 923-941, Sept. 2000.
[26] S. Shakkottai and T. S. Rappaport, ”Cross-layer design for wireless networks,” IEEE Commun. Mag., vol. 41, pp. 74-80,Oct. 2003.
[27] W. Kumwilaisak, T. Hou, Q. Zhang, W. Zhu, C.-C. Jay Kuo, and Y. Q. Zhang, “A cross-layer quality-of-service mapping architecture for video delivery in wireless networks,” IEEE J. Select. Areas Commun. vol. 21, pp. 1685-2003, Dec. 2003.
[28] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for Real-Time Applications,” RFC 3550, July 2003.
[29] R. Braden, L.Zhang, Berson, S. Herzog, and S. Jamin, “Resource ReSerVation Protocol (RSVP),” RFC 2205, Sep. 1997.
[30] S. R. Tong, Y. T. Yu, C. M. Huang, and M.H. Lin, “Efficient resource reservation based on communication paradigms for multicast multimedia applications,” IEEE Trans. Broadcasting, vol. 50, pp. 260-278, Sep. 2004.
[31] S. Vegesna, IP Quality of Service. Cisco Press, 2000.
[32] M. Bocci and J. Guillet, “ATM in MPLS-based converged core data networks,” IEEE Commun. Mag., vol. 41, pp. 139-145, Jan. 2003.
[33] P. Salama, N. B. Shroff, and E. J. Delp, “Error concealment in MPEG video streams over ATM networks,” IEEE J. Select. Areas Commun., vol. 18, pp. 1129-1144, June 2000.
[34] T. Kwok, ATM: The new paradigm for Internet, Intranet, and Residential broadband services and applications. New Jersey: Prentice Hall PTR, 1999.
[35] S. I. Maniatis, E. G. Nikolouzou, and I. S. Venieris, “End-to-end QoS specification issues in the converged all-IP wired and wireless environment,” IEEE Commun. Mag., vol. 42, pp. 80-86, June 2004.
[36] A. Durand, “Deploying IPv6,” IEEE Internet Computing, vol. 5, pp. 79-81, Jan.-Feb. 2001.
[37] M. Tatipamula and P. Grossetete, and H. Esaki, “IPv6 integration and coexistence strategies for next-generation networks,” IEEE Commun. Mag., vol. 42, pp. 88-96, Jan. 2004.
[38] E. B. Fgee, J. D. Kenney, W. J. Phillips, W. Robertson, and S. Sivakumar, “Implementing an IPv6 QoS management scheme using flow label & class of service fields,” in Proc. Electrical and Computer Engineering 2004, pp. 1049-1052, May 2004.
[39] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) specification,” IETF RFC 2460, Dec. 1998.
[40] S. Kent and R. Atkinson, “Security architecture for the Internet protocol,” IETF RFC 2401, Nov. 1998.
[41] D. Wright, “Voice over MPLS compared to voice over other packet transport technologies,” IEEE Commun. Mag., vol. 40, pp. 124-132, Nov. 2002.
[42] S. Ariga, K. Nagahashi, M. Minami, H. Esaki, and J. Murai. Performance evaluation of data transmission using IPSec over IPv6 networks. [Online]. Available: http://www.isoc.org/inet2000/ cdproceedings/li/li_1.htm.
[43] European Advanced Networking Test Center. Cisco Catalyst 6500 with supervisor 720 – 10 Gigabit Ethernet performance test. [Online]. Available: http://www.eantc.com/press/ pressreleases/sep03/EANTC-Summary-Report-Cisco-10GE-Catalyst6500-Supervisor720.pdf
[44] S. Zeadally and I. Raicu, “Evaluating IPv6 on Windows and Solaris,” IEEE Internet Computing, vol. 7, pp. 51-57, May-June 2003.
[45] I. Raicu and S. Zeadally, “ Impact of IPv6 on end-user applications,” in Proc. ICT 2003, pp. 973-980, March 2003.
[46] M. Degermark, B. Nordgren, and S. Pink, “IP header compression,” IETF RFC 2507, Feb. 1999.
[47] M. Engan, S. Casner, and C. Bormann, “IP header compression over PPP,” IETF RFC 2509, Feb. 1999.
[48] C. Bormann et al., ”RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed,” IETF RFC 3095, July, 2001.
[49] M. Degermark, “Requirements for robust IP/UDP/RTP header compression,” IETF RFC 3096, July, 2001.
[50] A. M. Dawood and M. Ghanbari, “Content-based MPEG video traffic modeling,” IEEE Trans. Multimedia, vol. 1, pp. 77-87, 2000.
[51] S. J. Yoo and S. D. Kim, “A new multi-level statistical model for variable bit rate MPEG sources over ATM networks and its performance study,” Computer Commun., vol. 24, pp. 296-307, 2001.
[52] X. Wang, S. Jung, and J. S. Meditch, “VBR broadcast video traffic modeling—A wavele decomposition approach,” in Proc. IEEE GLOBECOM’97, 1997, pp. 1052-1056.
[53] Jamin, P. B. Dansig, S. J. Shenker, and L. Zhang, “A measurement-based admission control algorithm for integrated service packet networks,” IEEE/ACM Trans. Networking, vol. 5, pp. 56-70, 1997.
[54] G. Chiruvolu, R. Sankar, and N. Ranganathan, “VBR video traffic management using a predictor-based architecture,” Computer Commun., vol. 23, pp. 62-70, 2000.
[55] C.-L. Chen and R.-s. Chang, “A new dynamic bandwidth allocation scheme for MEG videos in ATM networks,” Computer Commun., vol. 23, pp. 1505-1513, 2000.
[56] S. Feng and R. Sanker, “Limitation of and improvement to linear prediction and smoothing-based bandwidth allocation for VBR traffic,” in Proc. IEEE GLOBECOM’99, 1999, pp. 209-213.
[57] S. Chong, S.-Q. Li, and J. Ghosh, “Predictive dynamic bandwidth allocation for efficient transport of real-time VBR video over ATM,” IEEE J. Select. Areas Commun.,vol. 13, pp. 12-23, 1995.
[58] T. S. Randhawa and R. H. S. Hardy, “Proactive management of MPEG traffic in ATM networks using time sequenced RLS filters,” in Proc. ICATM’99, 1999, pp. 507-511.
[59] A. M. Adas, “Using adaptive inear prediction to support real-time VBR video under RCBR network service model,” IEEE/ACM Trans. Networking, vol. 6, pp. 635-644, 1998.
[60] X. Wang, S. Jung, and J. S. Meditch, “Dynamic bandwidth allocation for VBR video traffic using adaptive wavelet prediction,” in Proc. IEEE ICC’98, 1998, pp. 549-553.
[61] M. Hayes, Statistical Digital Signal Processing and Modeling. New York: Wiley, 1996.
[62] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[63] H.-M Hang and J.-J Chen, “Source model for transform video coder and its application─Part I: Fundamental theory,” IEEE Trans. Circuits Syst. Video Technol., vol. 7,pp. 287-298, Apr. 1997.
[64] H. Gish and J. N. Pierce, “Asymptotically efficient quantizing,” IEEE Trans. Inform. Theory, vol. IT-14, pp. 676-683, Sept. 1968.
[65] T. Berger, Rate Distortion Theory. Englewood Cliffs, NJ: Prentice-Hall, 1984.
[66] T. Chiang and Y. Q. Ahang, “A new rate control scheme using quadratic rate distortion model,” IEEE Trans. Circuits Syst. Video Technol., vol. 7,pp. 246-250, Feb. 1997.
[67] J. R. Corbera and S. Lei, “Rate control in DCT video coding for low-delay communications,” IEEE Trans. Circuits Syst. Video Technol., vol. 9,pp. 172-185, Feb. 1999.
[68] W. Ding and B. Liu, “Rate control of MPEG video coding and recording by rate-quantization modeling,” IEEE Trans. Circuits Syst. Video Technol., vol. 6,pp. 12-20, Feb. 1996.
[69] B. Tao, H. A. Peterson, and B. W. Dickinson, “A rate-quantization model for MPEG Encoders,” in Proc. 1997 Int. Conf. Image Processing, Oct. 1997, pp. 338-341.
[70] K. H. Yang, A. Jacquin, and N. S. Jayant, “A normalized rate-distortion model for H.263-compatible codecs and its application to quantizer selection,” in Proc. 1997 Int. Conf. Image Processing, Oct. 1997, pp. 41-44.
[71] L.-J Lin and A. Ortega, “Bit-rate control using piecewise approximated rate-distortion characteristics,” IEEE Trans. Circuits Syst. Video Technol., vol. 38, pp. 82-93, Jan. 1990.
[72] Z. He, Y. Kim, and S. K. Mitra, “A novel linear source model and a unified rate control algorithm for H.263/MPEG-2/MPEG-4,” presented at the Int. Conf. Acoustics, Speech, and Signal Proessing, Salt Lake City, UT, May 2001.
[73] ITU-T, “Video coding for low bit rate communications,”,ITU-T Recommendation H.263, version 1, Nov. 1995.
[74] T. Sikora, “The MPEG-4 video standard verification model,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 19-31, Feb. 1997.
[75] A. He, T.-H Yu, and S. K. Mitra, “Blockwise zeros mapping image coding,” in Proc. Int. Conf. Image Processing, Vancouver, BC, Canada, Sept. 2000.
[76] C.S. Chang and J.A. Thomas,“Effective bandwidth in high-speed digital networks,” IEEE J. Select. Areas Commun., vol. 13, pp. 1091-1101, Aug. 1995.
[77] T. Ott, T. V. Lakshman, and A. Tabatabai, “A scheme for smoothing delay-sensitive traffic offered to ATM networks,” in Proc. IEEE INFOCOM, Florence, Italy, May 1992, pp. 776-785.
[78] J. D. Salehi, Z. L. Zhang, J. Kurose, D. Towsley, “Supporting Stored Video: Reducing Rate Variability and End-to-End Resource Requirements Through Optimal Smoothing,” IEEE Trans. Networking, vol. 6, pp. 397-410, Aug. 1998.
[79] C. S. Chang and Y. H. Lin, “A general framework for deterministic service guarantees in telecommunication networks with variable length packets,” in Proc. Int. Workshop on Quality of Service, 1998, pp. 49-58.
[80] R. Cruz, “A calculus for network delay, part I: Network elements in isolation,” IEEE Trans. Inform. Theory, vol. 37, pp. 114-131, Jan. 1991.
[81] J. Rexford, S. Sen, W. Feng, K. Kurose, J. Stankovic, and D. Towsley, “Online smoothing of live, variable-bit-rate video,” in Proc. NOSSDAV, pp. 235-243, 1997.
[82] R. I. Chang, “Dynamic Window-Based Traffic-Smoothing for Optimal Delivery of On-line VBR Media Streams,” in Proc. ICPADS, pp. 127-134, 2000.
[83] V. Frost and B.Melamed, “Traffic modeling for telecommunications networks,” IEEE Commun. Mag., vol. 32, no. 3, pp. 70-81, Mar. 1994.
[84] S. Recker, W. Geisselhardt, and I. Wolff, “Dimensioning of traffic engineered trunks for deterministic service guarantees in mobile data networks,” in Porc. IEEE ICC’03, May 2003, pp. 1669-1674.
[85] D. E. Wrege, E. W. Knightly, H. Zhang, and J. Liebeherr, “Deterministic delay bounds for VBR video in packet-switching networks: fundamental limits and practical trade-offs,” IEEE/ACM Trans. Networking, vol. 4, no. 3, Jun. 1996.
[86] H. Esaki, “Call admission control method in ATM networks,” in Proc. ICC 92, vol. 3, pp. 1628-1633, June 1992.
[87] T. Ozawa, “Performance characteristics of a packet-based leaky-bucket algorithm for ATM networks,” IEICE Trans. Commun., E82-B, 1, pp. 305-308, 1999.
[88] W. Y. Chen, Jean-Lien C. Wu, and H. Y. Shin, ”Performance analysis of dynamic resource allocation with finite buffers in cellular networks,” in Proc. ICON2003, pp. 641-646, Oct. 2003.
[89] R. G. Cheng, C. J. Chang, and L. F. Lin, “A QoS-provisioning neural fuzzy connection admission controller for multimedia high-speed networks,” IEEE/ACM Trans. Networking, vol. 7, pp. 292-298, Feb. 1999.
[90] H. M. Mokhtar, R. Pereira, and M. Merabti, “An effective bandwidth model for deterministic QoS guarantees traffic,” in Proc. ISCC 2003, pp. 353-358, July, 2003.
[91] M. Grossglauser, S. Keshav, and D. N. C. Tse, “RCBR: A Simple and Efficient Service for Multiple Time-Scale Traffic,” IEEE Trans. Networking, vol.5, no. 6, pp. 741-755, Dec. 1997.
[92] G. Leshen, S. Sen, Y. Fangchun, and L. Jinde, “Dynamic end-system resource management for QoS control,” in Porc. IEEE Communications, Circuits and Systems and West Sino Expositions, July, 2002, pp. 644-647.
[93] C. Oottamakorn and D. Bushmitch, “Resource management and scheduling for the QoS-capable home network wireless access point,” in Proc. CCNC 2004, Jan. 2004, pp. 7-12.
[94] J. R. Yee and E. J. Weldon Jr., “Evaluation of the performance of error-corresting codes on a Gilbert channel,” IEEE Trans. Commun. Vol. 43, no. 8, pp. 2316-2323, Aug. 1995.
[95] ISO/IEC JTC1/SC29/WG11, “MPEG-4 video verification modelversion 18.0,” N3908, Jan. 2001.
[96] S. J. Yoo, “Efficient traffic prediction scheme for real-time VBR MPEG video transmission over high-speed networks,” IEEE Trans. Broadcast., vol. 48, pp. 10-18, Mar. 2002.
[97] Z. He and S. K. Mitra, “Optimum bit allocation and accurate rate control for video coding via ρ-Domain source modeling,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, pp. 840-849, Oct. 2002.
[98] J. Vieron and C. Guillemot, “Real-time constrained TCP-compatible rate control for video over the Internet,” IEEE Trans. Multimedia, vol. 6, pp. 634-646, Aug. 2004.
[99] J. Liebeherr, D. Wrege, and D. Ferrari, ”Exact admission control for networks with bounded delay services,” IEEE/ACM Trans. Networking, vol. 4, pp. 885-901, Dec. 1996.
[100] E. W. Knightly and H. Zhang, “D-BIND: An Accurate Traffic Model for Providing QoS Guarantees to VBR Traffic,” IEEE/ACM Trans. Networking, vol. 5, Apr. 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔