跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/16 20:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林思汎
研究生(外文):Si-Fan Lin
論文名稱:以正交分頻多工系統之同步的高效能內插法技術
論文名稱(外文):Efficient Implementation of Interpolation Technique for Synchronization of OFDM Systems
指導教授:魏慶隆 和 薛木添
指導教授(外文):Chin-Long Wey and Muh-Tian Shiue
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:52
中文關鍵詞:內插法技術正交分頻多工系統同步
外文關鍵詞:SynchronizationOFDMInterpolation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高速的數位通訊因為它可以改善頻帶上暫時性的強烈突波和窄頻干擾,所以運用是非常廣泛,而其中又以正交分頻多工(OFDM)技術更為。
正交分頻多工(OFDM)技術因為可以改善頻帶上暫時性的強烈突波和窄頻干擾,所以在高速的數位通訊上運用是非常廣泛。而OFDM最主要的優點是可以增強基本信號的能量進而克服通道上的衰減。
在數位通訊中,通道上的信號是由調變過的連續二進制信號所發送出去。而接收端則是經由取樣和量化之後,所解調變過的離散衰減信號。所以在接收端中最主要的關鍵就是讓時間同步,這樣才會使得接收端的接收效果達到最好。而時間同步所指的就是,在進來的資料信號取樣時間必須同步。
非同步的取樣信號是這個研究的主要範本。一般來說,接收端是使用固定的取樣頻率,但是由傳送端和接收端的資料取樣時間是不一樣的,這樣會導致非同步的情形發生。所以,在取樣後就必須做內插技術的補償。而內插技術通常是使用Lagrange的內插法,它的方式是改變有限脈衝頻率響應濾波器的係數,進而可以自動調整取樣後的資料。
這篇論文是以 Farrow 的架構來實現 cubic 和 quintic 兩種內插法的濾波器。在從Farrow 的架構來發展一個新的架構,它和傳統的 cubic Farrow 架構來做比較,在硬體方面是減少23%。
OFDM technique has been widely implemented in high-speed digital communications to increase the robustness against frequency selective fading or narrowband interface. The major advantage of OFDM is the ability to enhance the basic signal using approaches that can overcome channel impairments.
In digital communication, binary information is converted by means of a modulator into a continuous-time signal which is sent over the transmission channel. A digital receiver is to extract the information sequence from a discrete signal obtained after sampling and quantizing the distorted signal presented to the demodulator. At the receiver, accurate timing recovery is critical to obtained performance close to that of the optimal receiver. Timing in a data receiver must be synchronized to the symbols of the incoming data signals.
This study considers a non-synchronized sampling scheme. The received signal is performed by a fixed sampling clock; the samples are not synchronized to the incoming data symbols. Timing adjustment is done after sampling using interpolation. Farrow structure has been commonly used to efficiently implement the Lagrange interpolation for timing adjustment.
This thesis presents the efficient implementation of the Farrow structure for cubic and quintic interpolations. Results show that the developed cubic Farrow structure achieves a hardware cost reduction by 23% from the conventional one. The design concept can be readily extended to the Farrow structures for higher order interpolations.
Abstract
Chapter 1 Introduction...................................................................................................1
Chapter 2 Background...................................................................................................9
2.1 OFDM..............................................................................................................9
2.2 Synchronization with OFDM Receiver..........................................................16
2.3 Interpolation...................................................................................................19
Chapter 3 Development................................................................................................26
3.1 Improved Farrow Structure for Cubic Interpolation......................................27
3.2 Low-cost Farrow Structure for Quintic Interpolation....................................36
3.3 Performance Evaluation.................................................................................39
Chapter 4 Conclusions and Future Work.....................................................................44
References....................................................................................................................46
[1]R. Van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Artech House, 2000.
[2]W.Y. Zou and Y. Wu, “COFDM: an Overview,” IEEE Trans. on Broadcasting, pp.1-8, Mar. 1995.
[3] I. Kalet, “The Multitone Channel,” IEEE Trans. on Communications, pp.119- 124, Feb. 1989.
[4] P.S. Chow, J.C. Tu, and J. Cioffi, “Performance Evaluation of a Multichannel Transceiver System for ADSL and VHDSL Services,” IEEE Journal on Communications, pp.909-919, Aug. 1991.
[4]N.Al. Dhahir, and J.M. Cioffi, “Optimum Finite-Length Equalization for Multicarrier Transceivers,” IEEE Trans. on Communications, pp.56-64, Jan. 1996.
[5]T. Pollet and M. Peeters, “Synchronization with DMT Modulation,” IEEE Communication Magazine, pp.80-86, Apr. 1999.
[6] Charles K. Summers, ADSL Standard, Implementation, and Architecture, U.S. CRC Press LLC, 1999.
[7] European Telecommunication Standard ETS 300 744, “Digital Broadcasting Systems for Television, Sound and Data Services; Framing structure, channel coding and modulation for digital terrestrial television,” ETSI, 1997.
[8]C.L. Wey, “SoC Design of Digital Video Broadcasting Receiver and its Platform Development,” Technical Report to Research Project of National Science Council, May 2005.
[9]V. Tuukkanen, J. Vesma, and M. Renfors, “Combined Interpolation and Maximum Likelihood Symbol Timing Recovery in Digital Receivers,” Proceedings of IEEE International Conference on Universal Personal Communication, pp. 698-702, Oct. 1997.
[10]J. Vesma, M. Renfors, and J. Rinne, “Comparison of Efficient Interpolation Techniques for Symbol Timing Recovery,” Proceedings of IEEE Globecom 96, London, UK, pp.953-957, Nov. 1996.
[11]A.S.H. Ghadam and M. Renfors, “Farrow Structure Interpolators Based on Even Order Shaped Lagrange Polynomial,” Proceedings of International Symp. on Image and Signal Processing and Analysis, pp.745-748, Sep. 2003
[12]F.M. Gardner, “Interpolation in Digital Modems -- Part I: Fundamentals,” IEEE Trans. on Communications, pp.501-507, Mar. 1993.
[13]L. Eruo, F.M. Gardner, and R.A. Harris, “Interpolation in Digital Modems -- Part II: Implementation and Performance,” IEEE Trans. on Communications, pp.998-1008, June 1993.
[14]Min-Young Park and Weon-Cheol Lee, “A Demapping Method Using the Pilots in COFDM Systems,” IEEE Trans. on Consumer Electronics, vol.44, No.3, pp.1150-1153, Aug. 1998.
[15] P.K. Frenger and N. A. B. Sevensson, “Parallel Combinatory OFDM Signaling,” Electronic Letters, vol. 47, pp. 558-567, Apr. 1999.
[16] J.W. Coolkey and J. W. Tukey, “An Algorithm for the Machine Computation of Complex Fourier Transform Series,” Mathematics of computation, vol. 19, pp. 297-301, Apr. 1965.
[17] T. Pollet, P. Spruyt, and M. Moeneclaey, “The BER Performance of OFDM Systems Using Non-Synchronized Sampling,” Proceedings of Globecom 94, San Francisco, pp. 253-57, Dec. 1994.
[18] T.N. Zogakis and J.M. Cioffi, “The Effect of Timing Jitter on the Performance of a Discrete Multitone Signal,” IEEE Trans. Communications, vol. 44, pp. 799-808, July 1996.
[19] F.B. Hildebrand, Introduction to Numerical Analysis. New York: McGraw-Hill, Section 2.5, 1956.
[20] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes. Cambridge, England: Cambridge University Press, Section 3.5, 1986.
[21] M. Abramowitz and L.A. Stegun, Eds., Handbook of Mathematical Functions. Nat. Bur. Stds., Appl. Math. Series, vol. 55, pp. 878, June 1964.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top