跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/27 03:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林貴城
研究生(外文):Kuei-Cheng Lin
論文名稱:應用於寬頻劃碼多工進接系統及無線區域網路線性補償功率放大器之研製
論文名稱(外文):The Design and Implementation of Linear Compensation Power Amplifiers for W-CDMA and WLAN Applications
指導教授:邱煥凱
指導教授(外文):Hwann-Kaeo Chiou
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:114
中文關鍵詞:寬頻劃碼多工進接系統無線區域網路矽鍺雙載子互補金屬氧化半導體互補金屬氧化半導體製程開汲極適應式線性放大器預先失真前饋式架
外文關鍵詞:Adaptive Bias Doherty AmplifierDc-Dc ConverterOpen Adaptive Collector Bias AmplifierPredistortionSiGe BiCMOSCMOSFeedforwardW-CDMAWLAN
相關次數:
  • 被引用被引用:2
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文主題在於討論以矽製程實現高線性度之功率放大器電路,應用於寬頻劃碼多工進接系統(W-CDMA)與無線區域網路(WLAN)。採用台積電0.35�慆矽鍺雙載子互補金屬氧化半導體製程及0.18�慆互補金屬氧化半導體製程。以下依各章節不同的線性補償架構與應用來分類,概述論文中各電路的實際量測結果。
第一章簡述相關研究及各章所描述的內容。
第二章探討功率放大器必須考量的系統規格與參數,以及介紹各種不同類型的功率放大器。
第三章探討開汲極適應式線性放大器應用於W-CDMA,並且找出其功率級與線性偏壓電路之間的阻抗關係藉以改善放大器的線性度,在組抗比為3的時候獲得最佳的線性改善,最後在電路加上MOS二極體使得線性補償的特性更為顯注。此電路具有13.5dB的增益、大於10dB的輸出╱入回返損耗、18.6dBm的輸出1dB增益壓縮點、27.2dBm的輸出三階截斷點、31.2 %的最大功率增進效率。
第四章主要在探討高線性化功率放大器應用於W-CDMA,分別有預先失真與前饋式架構兩種改善線性化的技術,一個簡單可調增益預先失真放大器能有效的降低在輸出端的三階諧波量。利用台積電製程實現簡單不複雜的預先失真電路,具有7.8dB的增益、大於10dB的輸入回返損耗、大於7dB的輸出回返損耗、17.9dBm的輸出1dB增益壓縮點、30dBm的輸出三階截斷點在可變電壓Vbep=0.9V、37%的最大功率增進效率。前饋式架構方面,以一個簡單差動對架構,適當的選擇偏壓點及元件尺寸比率來有效抑制在輸出端的三階諧波量,此電路具有7.06dB的增益、大於16dB的輸入回返損耗、大於8.5dB的輸出回返損耗、14.4 dBm的輸出1dB增益壓縮點、31dBm的輸出三階截斷點及24.5%的最大功率增進效率。
第五章主要在探討高平均功率增進效率的功率放大器應用於W-CDMA及WLAN,分別有適應性偏壓多帝功率放大器與變壓轉換功率放大器兩種架構用來改善平均功率增進效率。最後利用台積電製程來實現此兩種功率放大器。量測後適應性偏壓多帝功率放大器具有6.5dB的增益、大於16dB的輸入回返損耗、大於3 dB的輸出回返損耗、20dBm的輸出1dB增益壓縮點、31dBm的輸出三階截斷點及24.5%的最大功率增進效率。變壓轉換功率放大器則具有9.5dB的增益、大於18dB的輸入回返損耗、大於5dB的輸出回返損耗、16.8dBm的輸出1dB增益壓縮點、30 dBm的輸出三階截斷點及42%的最大功率增進效率。
Abstract
The thesis investigated the analysis, design and implementation of linear compensation power amplifiers with silicon-based technologies for W-CDMA, WLAN 802.11a applications. The power amplifiers were implemented in tsmc 0.35�慆 SiGe BiCMOS and 0.18�慆 CMOS technologies.
The brief description of the related researches is given in the chapter one and the contents of each following chapters.
In the Chapter two the specifications and the operation class of power amplifier are presented.
In the Chapter three, I report a linear power amplifier with open adaptive collector biasing design for W-CDMA applications. The size effect of linearizer is investigated to improve linearity. The impedance ratio between the bias circuit and power stage is optimized at the factor of 3. Another compensated mechanism is provided by the drain-gate connected MOS diode. The diode feedback technique provides a supplement RF current in the higher power level which further enhances the linearity of the amplifier. The circuit was implemented with tsmc SiGe BiCMOS technology. This PA provides a 13.5dB gain with input or output return loss better than 10dB, and has output P1dB of 18.6dBm; output IP3 of 27.2dBm, the maximum PAE of 31.2 %.
Chapter four reports a high linearity power amplifier for W-CDMA applications. Two different linearization architectures, Predistortion (PD) and Feedforward are studied. A simple circuit of variable gain predistorter (APD) was implemented with tsmc SiGe BiCMOS technology. The APD amplifier provides a 7.8dB gain with input better than 10dB, output return loss is 7dB and has output P1dB of 17.9dBm, output IP3 of 30dBm at Vbep=0.9V, the maximum PAE of 37%. A simple differential amplifier using feedforward technique was implemented on a single chip by tsmc SiGe BiCMOS technology. The bias point and device size ratio of differential amplifier should be carefully chosen to get proper third order nonlinearity for the IM3 cancellation. The feedforward amplifier provides a 7.06dB gain with input better than 16dB, output return loss is 8.5dB and has output P1dB of 14.4dBm, and output IP3 of 31dBm, the maximum PAE of 24.5 %.
Chapter five reports a high average efficiency power amplifier for W-CDMA and WLAN applications. Doherty amplifier and DC-DC converter amplifiers are investigated. The Doherty amplifier was implemented with tsmc CMOS technology, which is provided a 6.5dB gain with input better than 16dB, output return loss is 3dB and has output P1dB of 20dBm, output IP3 of 31dBm, the PAE of 24.5 %. The DC-DC converter amplifier was implemented by tsmc SiGe BiCMOS technology, which is provided a 9.5dB gain with input better than 18dB, output return loss is 5dB and has output P1dB of 16.8dBm, output IP3 of 30dBm, the maximum PAE of 42 %.
Table of contents

Table of contents...................................................... VI
List of Tables..........................................................IX
List of Figures..........................................................X
Chapter 1 Introduction...................................................1
1.1 Background.......................................................1
1.2 Motivation.......................................................2
1.3 Thesis organization..............................................4
Chapter 2 RF Power Amplifier.............................................5
2-1 RF Power Amplifier...................................................5
2.1.1 Linearity......................................................5
2.1.2 1 dB Compression point (P1dB)..................................5
2.1.3 Intermodulation Distortion.....................................6
2.1.4 Third Order Intercept Point....................................7
2.1.5 Efficiency.....................................................8
2.1.6 Adjacent Channel Power Ratio...................................8
2.1.7 Effect of Nonlinearity on a W-CDMA System......................9
2.2 Power Amplifier Classes.............................................11
2-2-1 Class A, AB, B, and C Power Amplifiers........................11
2-2-2 Class A ......................................................12
2.2.3 Class B.......................................................14
2.2.4 Class AB......................................................15
2.2.5 Class C.......................................................15
2.2.6 Class D.......................................................16
2.2.7 Class E.......................................................17
2.2.8 Class F.......................................................18
Chapter 3 Linear Power Amplifier with an Open Collector Adaptive Bias
Controlled....................................................20
3.1 Introduction........................................................20
3.2 The Evolution of Linearity Power Amplifier..........................21
3.2.1 A Novel Series Diode Linearizer for Power Amplifier............21
3.2.2 Using a Parallel Diode with a Bias Feed Resistance.............23
3.2.3 Power Amplifier with an Active Linearization Technique.........25
3.3 Circuit Structure and Principle.....................................27
3.4 Design Flow.........................................................33
3.5 Measured Results....................................................36
3.6 Conclusion..........................................................43
Chapter 4 Power Amplifier with Linearity Compensation Technique.........44
4.1 Introduction........................................................44
4.2 The Evolution of Predistortion Power Amplifier......................48
4.2.1 A Predistortion Using a Tunable Resonator......................48
4.2.2 Dynamic Range Variable Gain Power Amplifier....................49
4.2.3 Variable Gain Active Predistorter..............................49
4.3 Circuit Structure and Principle.....................................50
4.3.1 The Design of a Variable Gain Active Predistorter..............50
4.3.2 Measured Results...............................................53
4.4 Circuit Structure and Principle.....................................61
4.4.1 The Design of Differential Feedforward Drive Amplifier (DFDA)..61
4.4.2 Measured Results...............................................64
4.5 Conclusion .........................................................72
Chapter 5 Power Amplifier using Efficiency Enhancement Technique........74
5.1 Introduction........................................................74
5.2 Circuit Structure and Principle.....................................79
5.2.1 The Design of Linearity Doherty amplifier......................79
5.2.2 Measured Results...............................................84
5.3 Circuit Structure and Principle.....................................92
5.3.1 The Design of Drive Amplifier with Dc-Dc converter.............92
5.3.2 Measured Results...............................................96
5.4 Conclusion.........................................................105
Chapter 6 Conclusion and Future Work...................................107
6.1Conclusion..........................................................107
6.2 Future Work........................................................108

References.............................................................109
References
[1]R.S. Narayanaswami, “RF CMOS Class C Power Amplifier for Wireless Communications”.
[2]L. Yacoubi, K. Al-Haddad, F. Fnaiech, L.A. Dessaint, ” A DSP-based implementation of a new nonlinear control for a three-phase neutral point clamped boost rectifier prototype, ” Industrial Electronics, IEEE Transactions on Volume 52, Issue 1, pp. 197 – 205, Feb. 2005.
[3]Third Generation Partnership (3GPP). http://www.3gpp.org
[4] IEEE Std 802.11a 1999, Partl 1: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz Band.
[5] S. Hamalainen, H. Lilja, A. Hamalainen, ” WCDMA adjacent channel interference requirements,” in Proc. Of the 50th IEEE Vebicular Technology Conference, Fall 99, Vol.5, Amsterdam, The NETHERLANDS, 19-20, pp. 2591-2595, September 1999.
[6] ETSI TS 125 101 v3.2.2 (2000-4): UMT-S; UE Radio transmission and reception (FDD).
[7] S. C. Cripps, “RF power amplifier for wireless communications,” Edition 1999.
[8] F. H. Raab, D. J. Rupp, “HF power amplifier operates in both class B and class D,” in Proc. RF Expo West, San Jose, CA, Mar. 17–19, pp. 114–124 , 1993.
[9]T.B. Mader, Z.B. Popovic, “The transmission-line high-efficiency class-E amplifier,” IEEE Microwave Guided Wave Lett., vol. 5, pp. 290–292, Sept. 1995.
[10]F.H. Raab, “Class-E, class-C, and class-F power amplifiers based upon a finite number of harmonics,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1462–1468, Aug. 2001.
[11] T. Yoshimasu, M. Akagi, N. Tanba, S. Hara, “An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications,” IEEE Journal of Solid-State Circuits, vol. 33, No.9, September 1998.
[12] K. Yamauchi, K. Mori, M. Nakayama, Y. Itoh, Y. Mitsui, O. Ishida,” A novel series diode linearizer for mobile radio power amplifiers,” Microwave Symposium Digest, 1996., IEEE MTT-S International , Volume: 2 , 17-21, June 1996.
[13] K. Yamauchi, K. Mori, M. Nakayama, Y. Mitsui, T. Takagi,” A microwave miniaturized linearizer using a parallel diode with a bias feed resistance,” Microwave Theory and Techniques, IEEE Transactions on , Volume: 45 , Issue: 12 , pp. 2431 – 2435, Dec. 1997.
[14] T. Yoshimasu, M. Akagi, N. Tanba, S. Hara,” A low distortion and high efficiency HBT MMIC power amplifier with a novel linearization technique for ��/4 DPSK modulation,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1997. Technical Digest 1997., 19th Annual , 12-15, pp. 45 - 48 , Oct. 1997.
[15] Y.S. Noh, C.S. Park, ” Linearized high efficiency HBT MMIC dual band power amplifier module for L-band applications,” Microwave Conference, 2001. APMC 2001. 2001 Asia-Pacific , Volume: 3 , pp. 3-6 ,Dec. 2001.
[16] J.H. Kim, Y.S. Noh, C.S. Park,” High linear HBT MMIC power amplifier with partial RF coupling to bias circuit for W-CDMA portable application,” Microwave and Millimeter Wave Technology, 2002. Proceedings. ICMMT 2002. 2002 3rd International Conference on , 17-19 ,Aug. 2002.
[17] B. Razavi, RF Microelectronics, Prentice Hall, 1997.
[18] G. Hau, T.B. Nishimura, N. Iwata, ”High efficiency, wide dynamic range variable gain and power amplifier MMICs for wideband CDMA handsets,” Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters Volume 11, Issue 1, pp. 13 – 15 ,Jan 2001.
[19] N. Gupta, A. Tombak, A. Mortazawi, “A predistortion linearizer using a tunable resonator,” Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters Volume 14, Issue 9, pp. 431 – 433 ,Sept. 2004.
[20] K. Yamauchi, K. Mori, M. Nakayama, Y. Mitsui, T. Takagi,” A microwave miniaturized linearizer using a parallel diode,” in IEEE MTT-S Int. Dig., Denver, CO, pp. 1199-1202, June 1997.
[21] J.K. Cavers,” Adaptation behavior of a feedforward amplifier linearizer,” Vehicular Technology, IEEE Transactions on Volume 44, Issue 1, pp. 31 – 40, Feb. 1995.
[22] J. Cha, J. Yi, J. Kim, B. Kim; “Optimum design of a predistortion RF power amplifier for multicarrier WCDMA applications” Microwave Theory and Techniques, IEEE Transactions on , Volume: 52 , Issue: 2 , pp. 655-663, Feb. 2004.
[23] P.L. Gilabert, E. Bertran, G. Montoro, J. Berenguer,” Study on the robustness of a 22 MHz bandwidth feedforward amplifier at the 2.4 GHz ISM-band,” Personal, Indoor and Mobile Radio Communications, 2004. PIMRC 2004. 15th IEEE International Symposium on Volume 1, 5-8 pp. 186 - 190 Vol.1, Sept. 2004.
[24]S. Narahashi, T. Nojima,” Extremely low-distortion multi-carrier amplifier-self-adjusting feed-forward (SAFF) amplifier,” Communications, 1991. ICC 91, Conference Record. IEEE International Conference on 23-26 pp. 1485 - 1490 vol.3, June 1991.
[25] N. Gupta, A. Tombak, A. Mortazawi,” A predistortion linearizer using a tunable resonator,” Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters] Volume 14, Issue 9, pp. 431 – 433 ,Sept. 2004.
[26] J.D. Cressler, “SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications , ” IEEE Trans. MTT, Vol. 46 , No. 5, pp.572 – 589, May 1998.
[27] G. Hau, T.B. Nishimura, N. Iwata, “A linearized power amplifier MMIC for 3.5 V battery operated wide-band CDMA handsets,” in IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, pp. 1503–1506, June 2000.
[28] J.H. Tsai, T.W. Huang,” A novel SiGe BiCMOS variable-gain active predistorter using current steering topologies,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2004. Digest of Papers. 2004 IEEE 6-8 pp. 559 – 562, June 2004.
[29] K.L.I. Maula, ” Variable gain control circuit for linear applications,” Electronics Letters Volume 36, Issue 20, 28 pp. 1682 – 1683, Sep 2000.
[30] P.R. GRAY, R.G. MEYER,” Analysis and design of analog integrated circuits,” (John Wiley & Sons, Inc. , pp. 673-675, , 1993.
[31] P. B. Kcnington, High-Linearity RF Amplifier Design, Arteeh House, 2000.
[32] H. Gao, H. Zhang, H. Guan, L.W. Yang, G.P. Li, “A novel compact composite power cell for high linearity power amplifiers in InGaP HBTs,” Compound Semiconductor Integrated Circuit Symposium, 2004. IEEE
24-27 pp.45 – 48, Oct. 2004
[33] P. Asbeck, G. Hannington, P.F. Chen, L. Larson,“Efficiency and linearity improvement in power amplifiers for wireless communications,” in IEEE GaAs IC Symp. Tech. Dig., pp. 15–18, 1998.
[34] W.H. Doherty, “A new high efficiency power amplifier for modulated waves,” Proc. IRE, Vol.24, No.9, pp. 1163-1182, 1936.
[35] D.M. Upton, P.R. Maloney, “A new circuit topology to realize high efficiency, high linearity, high power microwave amplifiers,” RAWCON’98 Proceedings, pp. 317-320, 1998.
[36] F.H. Raab, "Efficiency of Doherty RF power amplifier systems," IEEE Trans. on Broodcosting BC-33, pp. 77-83, 1987.
[37] Y. Yang, J. Cha, B. Shin; B. Kim, “A microwave doherty amplifier employing envelope tracking technique for high efficiency and linearity” Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters] , Volume: 13 , Issue: 9 pp. 370 – 372, , Sept. 2003.
[38] S.C. Cripps, “Advanced Techniques in RF Power Amplifier Design,” Edition 1999.
[39] T. Nojima, S. Nishiki, and K. Chiba,‘‘High efficiency transmitting power amplifiers for portable radio units,’’ IEICE Transactions, Vol. E74, 1563 (1991).
[40] P.M. Asbeck, T. Itoh, Y. Qian, M.F. Chang, L. Milstein, G. Hanington, P.F. Chen, V. Schultz, D.W. Lee, J. Arun, “Device and circuit approaches for improved linearity and efficiency in microwave transmitters,” in IEEE MTT-S Tech. Dig., pp. 327–330, 1998.
[41] G. Hanington, P.F. Chen, V. Radisic, T. Itoh, P.M. Asbeck, “Microwave power amplifier efficiency improvement with a 10 MHz HBT dc–dc converter,” in IEEE MTT-S Tech. Dig., pp. 589–592, 1998.
[42] J. F. Sevic, “Statistical characterization of RF power amplifier efficiency for CDMA wireless communication systems,” in Wireless Commun. Conf., Boulder, CO, pp. 110–113, Aug. 1997.
[43] M. Iwamoto, A. Williams, P.F. Chen, A.G. Metzger, L.E. Larson, P.M. Asbeck, “An extended Doherty amplifier with high efficiency over a wide power range, “IEEE Trans. Microwave Theory Tech., vol.49 no. 12, pp. 2472 - 2479 , Dec.2001.
[44] K.J. Youn, B. Kim, C.S. Lee, S.J. Maeng, J.J. Lee, K.E. Pyun, H.M. Park, “ Low dissipation power and high linearity PCS power amplifier with adaptive gate bias control circuit,” Electronics Letters Volume 32, Issue 17, pp. 1533 – 1535, 15 Aug. 1996.
[45] M. Ranjan, K.H. Koo, G. Hanington, C. Fallesen, P. Asbeck,” Microwave power amplifiers with digitally-controlled power supply voltage for high efficiency and high linearity,” Microwave Symposium Digest., 2000 IEEE MTT-S InternationalVolume 1, 11-16 pp. 493 - 496 vol.1, June 2000.
[46] Y.W. Kim; K.C. Han; S.Y. Hong; J.H. Shin,” A 45% PAE /18mA quiescent current CDMA PAM with a dynamic bias control circuit [power amplifier module” Radio Frequency Integrated Circuits (RFIC) Symposium, 2004. Digest of Papers. 2004 IEEE 6-8 pp. 365 – 368, June 2004.
[47] C. Tongchoi, M. Chongcheawchamnan, A. Worapishet, ” Lumped element based Doherty power amplifier topology in CMOS process,” Circuits and Systems, 2003. ISCAS ' 03. Proceedings of the 2003 International Symposium on Volume 1, 25-28 pp. I-445 - I-448 vol.1, May 2003.
[48] G. Hanington, P.F. Chen; P.M. Asbeck, L.E. Larson,” High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications,” Microwave Theory and Techniques, IEEE Transactions on Volume 47, Issue 8 pp.1471 – 1476, Aug. 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊