(3.235.191.87) 您好!臺灣時間:2021/05/13 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林玉峰
研究生(外文):Yu-Fong Lin
論文名稱:適用於在離散餘弦轉換域中降低空間解析度的視訊轉碼器之低複雜度移動向量精練演算法
論文名稱(外文):Video Transcoder in DCT-Domain Using Low Complexity Motion Vector Refinement Algorithm for Spatial Resolution Reduction
指導教授:蔡宗漢蔡宗漢引用關係
指導教授(外文):Tsung-Han Tsai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:69
中文關鍵詞:離散餘弦轉換域之向量補償移動向量視訊轉碼器
外文關鍵詞:MC-DCTmotion vectorvideo transcoding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來各種多媒體的服務造成正快速的成長,而這使得對數位視訊的需求量增加,例如:視訊遠距教學、視訊監控系統等等…。在這些多媒體的應用中,數位視訊壓縮是一重要的腳色。而對於各種多樣化的多媒體服務往往會由於不同的網路限制而要求不同的Bit-Rate。除此之外,一些客戶端設備的限制也決定了對各種不同視訊壓縮規格的需求。於現今的技術中,數位視訊轉碼器可以允許使用者快速的將之前已壓縮好的數位視訊資料轉換為另外一種格式以符合各種不同應用的需求。
在這篇論文中我們主要探討的問題是在離散餘弦轉換域中降低空間解析度的視訊轉碼器。在此提出了技術包含,階層式的快速移動向量產生(HFMR)已產生更精準的移動向量、低複雜度的快速的精鍊非整數的移動向量法(FRNI)與動態調整搜尋法(DRS)。兩種不同的精煉移動向量演算法是設計於不同的視訊轉碼架構之上分別適用於不同的需求。基於brute-force MC-DCT,我們提出使用快速的精鍊非整數的移動向量以增加整體的壓縮品質相對於未精練的移動向量並減少運算複雜度。而動態調整搜尋法則是基於利用半精準移動向量的MC-DCT與有效率的方法於萃取離散餘弦轉換域方塊在MC-DCT中以便更進一步的增進整體效能。
從實驗結果中我們可以清楚地了解到我們所提出的各種演算法都能非常有效率的增進數位視訊壓縮的品質與降低其運算複雜度於離散餘弦轉換域的視訊轉碼器上。
Recently, the masses have brought up all kinds of multimedia services to more and more demands of digit video, such as video on demand, distance learning and video surveillance. In these applications, compressed digital video is a major component of the multimedia data. Those various multimedia services demand different bit-rates to adapt network limitations and diverse terminal constraints decided by user. Among these techniques, video transcoding has allowed user to convert a previously compressed bit-stream into another format to meet various multimedia services.
In this thesis, we address in the topic of spatial-downscaling video transcoder in DCT domain. The proposed techniques include the Hierarchical Fast Motion Resampling (HFMR) with accuracy motion resampling, the Fast Refinement for Non-Integral-MV (FRNI) and the Dynamic Regulating Search (DRS) with low complexity motion vector refinement. Two kinds of motion vector refinement algorithms are design for different architectures and applications. Based on brute-force MC-DCT (Motion Compensation in DCT-Domain), FRNI can provide better quality than non-refine motion vector and reduce the complexity. DRS can utilize the filter for half-pixel motion vector in MC-DCT and efficient method for extracting MC-DCT block to improve the performance further.
From the experiments we have conducted, we believe that our proposed algorithms can improve the entire quality and also reduce the complexity for DCT-Domain video transcoder.
Abstract i
Content ii
List of Figure vi
List of Tables vi

Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Video Transcoding 3
1.3 Thesis Organization 6

Chapter 2 Background and Related Work 8
2.1 Overview of DCT-Domain Video Transcoder 9
2.2.1. DCT Domain Down-Conversion 9
2.2.2. Fast Motion Resampling (FMR) 12
2.2.3. DCT domain motion compensation (MC-DCT) 14
2.3 Related Work 19
2.3.1. MC-DCT for Half-Pixel Motion Vector[6] 19
2.3.2. Fast Motion Vector Refinement and Efficient Method for
Extracting MC-DCT block in MVR [7] 23

Chapter 3 Proposed Algorithms 31
3.1 Hierarchical Fast Motion Resampling (HFMR) 33
3.2 Proposed Fast Motion Vector Refinements 34
3.2.1. Fast Refinement for Non-Integral MV (FRNI) 34
3.2.2. Dynamic Regulating Search (DRS) 37

Chapter 4 Experiment Result and Analysis 42
4.1 Experiment Environment 42
4.2 Experiment Result of HFMR 43
4.3 Experiment Result of FRNI 46
4.4 Experiment Result of DRS 49
4.5 The Comparison of FRNI and DRS 53

Chapter 5 Conclusions 54
References 56
[1]“Video coding for low bit rate communication,” Int. Telecommun. Union-Telecommun. (ITU-T), Geneva, Switzerland, Recommendation H.263, 1998,
[2]A. Vetro, C. Christopulos, and H. Sun, “Video transcoding architectures and techniques: An overview,” IEEE Signal Process. Mag., vol. 20, no. 2, pp. 18–29, Mar. 2003.
[3]P. Yin, A. Vetro, B. Liu, and H. Sun, “Drift compensation for reduced spatial resolution transcoding,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 11, pp. 1009–1020, Nov. 2002.
[4]W. Zhu, K. Yang, and M. Beacken, “CIF-to-QCIF video bitstream down-conversion in the DCT domain,” Bell Labs. Tech. J., vol. 3, no. 3, pp. 21–29, Jul.–Sep. 1998.
[5]B. Shen, I.K. Sethi, and V. Bhaskaran, “Adaptive Motion Vector Resampling for Compressed Video Down-scaling,” IEEE Transactions on Circuits and Systems for Video Technology, vol.9, no.6, pp.929-936, Sept. 1999.
[6]Gang Cao, Zhijun Lei, Jintao Li, Nicolas D. Georganas, and Zhenmin Zhu, “A novel DCT domain transcoder for transcoding video streams with half-pixel motion vectors,” Real-Time Image, vol 10, No. 5, pp. 331-337, October 2004.
[7]Kwang-deok Seo and Jae-kyoon Kim, “Fast motion vector re-estimation for transcoding MPEG-1 into MPEG-4 with lower spatial resolution in DCT-domain,” Signal Process. Image Commun., vol. 19, no. 4, pp. 299–312, April 2004.
[8]P. A. A. Assuncao and M. Ghanbari, “A frequency-domain video transcoder for dynamic bitrate reduction of MPEG-2 bit streams,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 8, pp. 953–967, Dec. 1998.
[9]S-F. Chang, D.G. Messerschmitt, “A new approach to decoding and compositing motion-compensated DCT based images,” Proceedings of the ICASSP, Minneapolos, MN, pp. V.421–V.424, April 1993.
[10]N. Merhav, V. Bhaskaran, “Fast algorithm for DCT domain image down sampling and for inverse motion compensation,” IEEE Trans. Circuits Systems Video Technol. 7 vol.3, pp. 468–476, June 1997.
[11]N. Merhav, “Multiplication-free approximate algorithm for compressed-domain linear operations on images,” IEEE Trans. Image Process. Vol.8, pp. 247-254, Feb. 1999.
[12]Yusuf, A.A.; Murshed, M.; Dooley, L.S., “An HVS-based motion vector composition algorithm for spatial resolution transcoding,” ITCC, Vol. 2, pp. 682-688, 2004.
[13]King N. Ngan, Douglas Chai, Andrew Millin, “Very low bit rate video coding using H.263 Coder”, IEEE Trans. Circuits, Syst., Video Technol, vol. 6, pp. 308-312, Jun. 1996.
[14]Yuh-Reuy Lee, Chia-Wen Lin, Cheng-Chien Kao, “A DCT-Domain Video Transcoder for Spatial Resolution Downconversion,” VISUAL, pp. 207-218, 2002.
[15]S. F. Chang and D. G. Messerschmitt, “Manipulation and compositing of MC-DCT compressed video,” IEEE J. Select. Areas Commun., vol. 13, no. 1, pp. 1-11, Jan. 1995.
[16]Shanableh T, Ghanbari M, “Transcoding architectures for DCT domain heterogeneous video transcoding,” ICIP, pp. 433–436, Oct. 2001.
[17]T. Shanableh and M. Ghanbari, “Hybrid DCT/pixel domain architecture for heterogeneous video transcoding,” Signal Process. Image Commun., vol. 18, no. 8, pp. 601–620, Sep. 2003.
[18]P. Yip, K. Rao, “On the shift property of DCTs and DSTs,” IEEE Trans. Acoust. Speech Signal Process. vol. 35, pp. 404–406, 1987.
[19]U. Koc, K. Ray, “DCT-based motion estimation,” IEEE Trans. Image Process. vol 7, pp. 948–965, July 1998.
[20]J. Chen, K. Liu, “A complete pipelined parallel CORDIC architecture for motion estimation,” IEEE Trans. Circuits System-II: Analog and Digital Signal Process, vol. 45, pp. 653–660, May 1998.
[21]A. Jain, “Fundamentals of Digital Image Processing,” Prentice-Hall, Englewood Cliffs, NJ, 1985.
[22]B. Shen, I.K. Sethi, and V. Bhaskaran, “Adaptive Motion Vector Resampling for Compressed Video Down-scaling”, IEEE Transactions on Circuits and Systems for Video Technology, vol.9, no.6, pp.929-936, Sept. 1999.
[23]Jun Xin, Chia-Wen Lin, and Ming-Ting Sun, “Digital Video Transcoding,” IEEE Proceeding, Vol. 93, Issue 1, pp.84-97, Jan. 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔