|
[1] Andersen, P. K. Borgan, O. Gill, R.D. and Keiding, N.(1993). Statistical Methods on Counting Processes. Springer-Velag. [2] Anderson, T.W. (1984). An Introduction to Multivariate Statistical Analysis. 2nd ed. Wiley. [3] Bosq, D.(1998). Nonparametric Statistic Stochastic Process. 2nd. ed., Lecture Notes in Statistics 110. Springer. [4] Basawa, I.V. and Prabhu, N.U. (1994). Statistical Inference in Stochastic Pro- cesses. Special issue of Journal of Statistical Planning and Inference, 39. [5] Breslow, N. E. (1970). A Generalized Kruskal-Wallis Test for Comparing K Sam- ples Subject to Unequal Patterns of Censorship. Biometrika 57 ,579-594. [6] Basawa, I.V. and Prakasa Rao, B.L.S. (1980). Statistical Inference for Stochastic Processes, Academic Press, London. [7] Billingsley, P. (1961). Statistical Inference for Markov Processes. University of Chicago Press, Chicago. [8] Beran, J. (1994). Statistical Methods for Long Memory Processes. Chapman and Hall, London . [9] Cox, D. R. and Lewis, P. A. W. (1978). The Statistical Analysis of Series of Events. Chapman and Hall. [10] Delgado, M.A. (1993). Testing the Equality of Nonparametric Regression Curves. Statist. Probab. Lett.,17, 199-204. [11] Dette, H. and Munk, A. (1998). Nonparametric Comparison of Several Regression Functions: Exact and Asymptotic Theory. Ann. Statist.,26, 2339-2368. [12] Dette H. and Neumeyer N. (2001). Nonparametric Analysis of Covariance. Ruhr- UniversitÄat Bochum. Ann. Statist. Vol. 29, No. 5, 1361-1400. [13] Fleming, T. R. and Harrington, D. P.(1991). Counting Processes and Survival Analysis. Wiley. [14] Guttorp, P.(1991). Statistical Inference for Branching Processes. Wiley. [15] Gehan, E. A. (1965). A Generalized Wilcoxon Test for Comparing Arbitrarily Singly Censored Samples. Biometrika 52 ,203-223. [16] Grenander, U. (1981). Abstract Inference. Wiley. [17] HÄardle, W. and Marron, J.S. (1990). Semiparametric Comparison of Regression Curves. Ann. Statist.,18, 63-89. [18] Hogg, R. V. and Craig, A. T. (1995). Introduction to Mathematical Statistics. 5nd ed., Prentice Hall. [19] Klein J. P. and Moeschberger M. L. (1997). Survival Analysis. Medical College of Wisconsin and The Ohio State University Medical Center. [20] Kutoyants, Yu.A. (1984). Parameter Estimation for Stochastic Processes (trans. and ed. B.L.S. Prakasa Rao), Heldermann, Berlin. [21] Kutoyant, Y.A. (2004). Statistical Inference for Ergodic Di®usion Processes. Spriner. [22] King, E.C., Hart, J.D. and Wehrly, T.E. (1991). Testing the Equality of Regres- sion Curves Using Liner Smoothers. Statist. Probab. Lett.,12, 239-247. [23] Karr, A. F. (1991). Point Processes and their Statistical Inference. Marcel Dekker, New York. [24] Prakasa Rao, B.L.S. (1999a). Statistical Inference for Di®usion Type Process. Arnold. [25] Prakasa Rao, B.L.S. (1999b). Semimartingales and their Statistical Inference. Chapman and Hall. [26] Prakasa Rao, B.L.S. and Bhat, B.R. (1996). Stochastic Processes and Statistical Inference. New Age International, New Delhi. [27] Prabhu, N. U., ed. (1988). Statistical Inference from Stochastic Processes. (Con- temporary Mathematics, Vol. 80 ). American Mathematical Society, Providence, RI. [28] Prabhu, N. U. and Basawa, I. V. (1991). Statistic Inference in Stochastic Pro- cesses. Marcel Dekker, New York. [29] Su, S.T. (2004). ANOVA for Constant Means of Brownian motions and Poisson Processes. Master Thesis, National Central University. [30] Shorack, G. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley. [31] Taniguchi, M. and Kakizawa, Y. (2000). Asymptotic Theory of Statistical Infer- ence for Time Series. Springer. [32] Tarone, R. E. and Ware, J. H. (1977). On Distribution-Free Tests for Equality for Survival Distributions. Biometrika ,64,156-160.
|