(3.238.130.97) 您好!臺灣時間:2021/05/14 18:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳裕元
研究生(外文):Ryan Chen
論文名稱:金屬粉末射出成型毛細吸附脫脂之實驗觀察與分析
論文名稱(外文):Experiment Observation and Analysis for Wick Debinding in Metal Injection Molding
指導教授:洪勵吾
指導教授(外文):Lih-Wu Hourng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:74
中文關鍵詞:金屬粉末射出成型流動波前毛細脫脂成品缺陷
外文關鍵詞:wick debinding.metal powder injection moldingflow front
相關次數:
  • 被引用被引用:5
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
日益成熟的技術使得金屬粉末射出成型對製造精密金屬貢獻良多,其中的脫脂過程更是整個製程中的關鍵點,而在成品的性能以及成本的考量之下,改善脫脂過程的研究早已為各界學者所致力。
有別於一般的鋼珠試驗,本文主要以最適合實際製程的金屬粉末,進行脫脂實驗來觀察與探討所得的結果。對於因胚體的形狀所影響的黏結劑流動波前,以及由不同金屬粉末製成的胚體其脫脂完後成品間的優劣加以分析歸納。進一步探討各工作參數相互間的影響關係,且和參考文獻的結果做一比較。本文清楚描述出脫脂時黏結劑的流動情形,並點出實驗和數值模擬之間可能出現的不同,可提供給後續研究者參考。
In the mature technique of metal powder injection molding (MIM), debinding process plays the key role among the whole procedures. In the consideration of cost and performance of the products, many researches have been studied on how to improve the debinding procedure.
In the article, the metal powder for industrial use, in stead of the steel ball, is adopted in the experiments. The debinding process is observed and discussed. Furthermore, the variation of the flow fronts as will as the quality of the products for different compact shapes and powder sizes are analyzed and compares with previous researches.
By the clear statement of the debinding process and the indication of errors between experiment and numerical simulation, this paper may offer valuable reference for the future researches.
第一章 序論..............................................1
1-1 簡介.........................................1
1-2 MIM製程技術與優劣性..........................2
1-3 MIM工程問題..................................5
1-3-1 粉末原料..............................5
1-3-2 黏結劑................................6
1-3-3 脫脂工程..............................8
1-4 文獻回顧....................................10
1-5 研究方向與目標..............................14
第二章 理論模式.........................................17
2-1 基本參數....................................17
2-1-1 空孔度...............................17
2-1-2 滲透度...............................18
2-1-3 毛細壓力.............................19
2-1-4 飽和度...............................20
2-1-5 無因次參數...........................21
2-2 可控因子選擇................................21
2-3 基本假設與數學模式..........................22
第三章 實驗裝置與步驟...................................25
3-1 實驗設備....................................25
3-2 實驗材料....................................28
3-3 實驗方法....................................29
3-3-1 胚體壓製.............................29
3-3-2 胚體脫脂.............................30
3-3-3 影像與數據擷取.......................30
3-4 注意事項....................................31
第四章 結果與討論.......................................33
4-1 黏結劑流動觀察..............................33
4-1-1 不同半徑的圓形胚體...................34
4-1-2 不同邊長比的矩形胚體.................34
4-2 脫脂成品的缺陷..............................35
4-3 胚體厚度之於脫脂時間、脫脂率................36
4-4 胚體與吸附材之粉末粒徑的關係與空孔度的影響..39
第五章 結論.............................................41
參考文獻.................................................43
表 1-1 MIM與P/M特性比較............................. 47
表 3-1 實驗材料的相關物理特性表....................... 48
表 4-1 不同邊長比的鋁製矩形胚體脫脂時的結果........... 49
表 4-2 鐵、鋁胚體在不同胚體半徑D與脫脂率的關係....... 50
表 4-3 不同吸附材粒徑的鋁製胚體脫脂結果............... 51
表 4-4 不同空孔度的鋁製胚體脫脂結果................... 52
圖 1-1 MIM製造流程圖[2].............................. 53
圖 1-2 工業上脫脂技術的分野........................... 54
圖 1-3 MIM產品設計優勢[6]............................ 55
圖 1-4 脫脂後殘留黏結劑在胚體內狀態示意圖[11]......... 56
圖 2-1 毛細脫脂飽和度示意圖........................... 57
圖 2-2 數值模擬胚體半徑與脫脂時間關係................. 58
圖 3-1 胚體壓製實驗裝置圖............................. 59
圖 3-2 胚體脫脂模具圖................................. 60
圖 3-3a 實驗步驟流程圖-胚體壓製........................ 61
圖 3-3b 實驗步驟流程圖-胚體脫脂........................ 62
圖 4-1 粉末粒徑6mm鋁製胚體脫脂時黏結劑流動波前圖..... 63
圖 4-2 粉末粒徑8mm鋁製胚體脫脂時黏結劑流動波前圖..... 64
圖 4-3a 邊長比1:2鋁製胚體脫脂時黏結劑流動波前圖...... 65
圖 4-3b 邊長比1:2.5鋁製胚體脫脂時黏結劑流動波前圖.... 66
圖 4-3c 邊長比1:3鋁製胚體脫脂時黏結劑流動波前圖...... 67
圖 4-4 鋁製胚體脫脂後成品缺陷顯示圖................... 68
圖 4-5 鐵、鋁胚體直徑D與總脫脂時間T關係圖........... 69
圖 4-6 鐵胚體脫脂實驗結果與柳[21]之比較 (Normalize)... 70
圖 4-7 鐵、鋁胚體直徑D與平均飽和度S關係圖........... 71
圖 4-8 不同吸附材粒徑的鋁胚體脫脂30分鐘與脫脂率的關係 72
圖 4-9 鋁胚體脫脂30分鐘後脫脂率與脫脂時間平方根的關係 73
圖 4-10 不同空孔度的鋁胚體脫脂30分鐘與脫脂率的關係.... 74
1. B. Haworth and P. J. James,“Injection Molding of
Powders”, Metal Powder Report, pp.146-149 (1986).
2. 陳文信, “金屬粉末射出成型技術”, 機械工業雜誌, 
Vol.154, pp.148-158 (1996).
3. 陳文信, “金屬粉末射出成型零件市場”, ITRI, MR-151-C209
材料產業透析, (1995).
4. R. M. German, “Theory of Thermal Debinding”,
Int.J.Powder Metall, Vol.23, No.4, pp.237-245 (1987).
5. R. M. German and K. F. Hens, S. P. Lin, “Key Issues in
Powder Injection Molding”, Ceramic Bulletin, Vol. 70, No.8, pp.1294-
1302 (1991).
6. 周村 裕幸,“金屬粉末射出成型製程”, 粉末冶金會刊,
Vol.22, No.1, pp.31-40 (1997).
7. R. M. German,“Powder Injection Molding”, Metal Powder
Industries Federation, Princetion, NJ, pp.321-346 (1990).
8. J. Woodthorpe, M. J. Edirisinghe and J. R. G. Evans, “Proterties of
Ceramic Injection Moulding Formation”,
Metal. Sci., Vol.24, No.2, pp.1038-1048 (1989).
9. J. G. Zhang, M. J. Edirisinghe and J. R. G. Evans, “A
Catalogue of Ceramic Injection Moulding Defects and Their Causes”,
Industrial Ceramics, Vol.9, No.8, pp.72-82 (1989).
10.K. S. Hwang and T. H. Tsou, “Thermal Debinding of Powder
Injection Moldied Parts : Observation and Mechanisms”, Metallurgical
Transactions, Vol.23, No.1, pp.192-277 (1992).
11.B. K. Lograsso and R. M. German, “Thermal Debinding of
Injection Moldied Powder Compacts”, Powder Metallurgy Internation, Vol.22,
No.1, pp.17-22 (1990).
12.R. T. Fox and Daeyong Lee, “Optimization of Metal
Injection Molding : Experimental Design”, Int. J. Powder Metall., Vol.26,
No.3, pp.233-243 (1990).
13.B. R. Patterson and C. S. Aria, “Debinding Injection
Molding Materials by Melt Wicking”, Journal of Materials Processing
Technology, Vol.41, Iss.8, pp.22-24 (1989).
14.R. Vetter, M. J. Sanders, I. Majewska-Glabus, L. Z. Zhuang
and J. Duszczyk, “Wick-debinding in Powder Injection Molding”, Powder
Metall.,Vol.30, No.1, pp.115-124 (1994).
15.R. Vetter, W. R. Horninge, P. J. Vervoort, L. Z. Zhuang,
I. Majewska-Glabus, and J. Duszczyk, “Squared Root Wick Debinding Model
for Powder Injection Moulding”, Powder Matell.,Vol.37, No.4, pp.265-271
(1994).
16.K. C. Hsu and G. M. Lo, “Effect of Binder Composition on
Rheology of Iron Powder Injection Moulding Feedstocks : Experimental
Design”, Powder Metall., Vol.39, No.4, pp.286-290 (1996).
17.K. F. Hens, S. T. Lin, R. M. German and D. Lee, “The effects
of Binder on the Mechanical Properties of Carbonyl Iron Products”, Journal
of Materials Processing Technology, Iss.8, pp.17-21 (1989).
18.M. S. Shin and L. W. Hourng, “Numerical Simulation of
Capillary-induced Flow in a Powder-embedded Porous Matrix”, Adv. Powder
Tech., Vol.12, No.4, pp.451-480 (2001).
19.C. C. Chen and L. W. Hourng, “Numerical Simulation of
Two-dimensional Wick Debinding in MIM by Body Fitted Finite
Element Method”, Powder Metallurgy., Vol.42, No.4, pp.313-319 (1999).
20.C. Y. Chang, “Numerical Simulation of Two-dimensional
Wick Debinding in Metal Powder Injection Molding”, Advanced Powder
Technology, Vol.14, No.2, pp.177-194 (2003).
21.柳立明, “金屬射出成型中毛係吸附脫脂製程參數之最佳化分
析”, 中央大學機械工程研究所碩士論文 (1999).
22.J. K. Wright and J. R. G. Evans, “Removel of Organic
Vehicle from Moulded Ceramic Bodies by Capillary Action”,Ceramics
International, Vol.6, No.17, pp.79-87 (1991).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top