(3.238.96.184) 您好!臺灣時間:2021/05/12 23:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何萬青
研究生(外文):Wan-Ching Ho
論文名稱:熱化學氣相沉積法製備橫向奈米碳管之研究
論文名稱(外文):Properties of lateral carbon nanotube grown by thermal CVD
指導教授:黃豐元黃豐元引用關係
指導教授(外文):Fuang-Yuan Huang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:94
中文關鍵詞:接觸電阻拉曼散射光譜熱化學氣相沉積法奈米碳管
外文關鍵詞:contact resistanceRaman SpectroscopyThermal CVDcarbon nanotube
相關次數:
  • 被引用被引用:1
  • 點閱點閱:107
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
實驗利用常壓熱化學氣相沉積(Thermal Chemical Vapor Deposition, Thermal CVD)成長橫向奈米碳管。配合I-line 微影技術,及金屬層蝕刻定義元件形狀。利用單因子實驗,設定不同操作參數,如製程溫度、乙烯在碳源中比例、甲烷流量、製程時間、不同載流氣體種類等,而得到數量、形貌、品質優良橫向奈米碳管,並結合微影
定義合成元件結構。並利用拉曼散射光譜(Raman Spectroscopy)分析,判定奈米碳管石墨化程度好壞。橫向奈米碳管元件利用I-V 電性量測分析,探討元件電性穩定性。並透過公式推算,計算元件電阻。由於元件成長橫向奈米碳管之催化劑為鎳金屬層,亦藉由本實驗設計結構,計算鎳金屬層和橫向奈米碳管之接觸電阻問題。
奈米碳管之物理特性廣受各界的期待,但由於成長定位方式,及製程相容之不成熟,故奈米碳管之應用產品仍在實驗階段。本次實驗成功利用不同製程參數,控制橫向奈米碳管的成長數量及品質。利用兼容IC 製程,配合微影定義元件形狀,傳統成長奈米碳管技術成長橫向奈米碳管。也由設計的元件結構合成橫向奈米碳管橋建元件,整
合元件之品質與穩定,對未來奈米碳管之定位與應用盡一分心力。
目錄
摘要……………………………………………………………………..Ⅰ
目錄……………………………………………………………………..Ⅱ
表目錄…………………………………………………………………..Ⅳ
圖目錄…………………………………………………………………..Ⅴ
第一章緒論…………………………………………………………..1
1.1 前言………………………………………………………….1
1.2 研究動機………………………………………..………….4
第二章奈米碳管之簡介..……………………………………………6
2.1 奈米碳管之製備方法…………………………………….. 6
2.2 熱化學沉積法……………………………………………..10
2.3 奈米碳管的排列結構及電性……………………………..13
第三章實驗方法………………………...………………………..16
3.1 利用熱裂解化學氣相沉積法成長奈米碳管……………..16
3.2 橫向奈米碳管之成長…………………………………....20
3.3 整合橫向奈米碳管到元件製作…………………………..22
3.4 拉曼散射……………………………….………………...24
3.5 橫向成長奈米碳管元件之電性量測….………………...26
3.6 實驗儀器簡介……………………………………………..29
第四章實驗結果與討論…………………………………………33
4.1 奈米碳管的結構分析與鑑定…..………………………..33
4.2 橫向結構與成長橫向奈米碳管…………………………..35
4.3 成長目標………………………………….……………...38
4.4 實驗參數對橫向奈米碳管石墨化的影響及電性分析....40
4.5 不同乙烯在碳源中比例的影響….……………………...43
4.6 不同甲烷流量之影響………….………………………...53
4.7 利用氮氣為載氣之影響………….……….……………..58
4.8 利用微波電漿化學氣相沉積成長橫向奈米碳管..……..69
第五章結論………………………………………………………75
參考文獻………………………………………………………………76
參考文獻
[1] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical propertie of carbon
nanotubes, Imperial College Press, (1998)
[2] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, Vol.354, 1991,
pp.56-58.
[3] G. Overney, W. Zhong, and D. Z. Tomanek, Phys. D, 27 (1993) 93
[4] S. Ihara, S. Itoh, “Helically coiled and toroidal cage forms of graphitic carbon”,
Carbon, 33 (1995) 931
[5] H. Cui, O. Zhou, and B. R. Stoner, “Deposition of aligned bamboo-like carbon
nanotubes via microwave plasma enhanced chemical vapor deposition”,
Journal of Applied Physics, 88 (2000) 6072
[6] S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, and J. B. Nagy,
“A formation mechanism for catalytically grown helix-shaped graphite
nanotubes”, Science, 265 (1994) 635
[7] X. Wang, Z. Hu, Q. Wu, X. Chen, and Y. Chem, “Synthesis of multi-walled carbon
nanotubes by microwave plasma-enhanced chemical vapor deposition”, Thin
Soild Films, 390 (2001) 130
[8] Y. Wen, and Z. Shen, “Synthesis of regular coiled carbon nanotubes by
Ni-catalyzed pyrolysis of acetylene and a growth mechanism analysis”,
Carbon, 39 (2001) 2369
[9] 楊正杰, 張鼎張, “銅金屬和低介電常數材料與製程”, 第七卷, 第四期。
[10] Proceeding of Meeting of The International Technology Roadmap for
Semiconductors (ITRS), December 2003.
[11] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon
Nanotubes, Imperial College Press (ICP), 1998.
[12] M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young’s
modulus observed for induvidual carbon nanotubes”, Nature, Vol.381, 1996,
pp.678-680.
[13] N. Hamada, S. I. Sawada, and A. Oshiyama, “New one-dimensional counductors:
graphitic microtubules”, Physics Review Letter, Vol.68, 1992, pp.1579-1581.
[14] Q. H. Wang, T. D. Corrigan, J. Y. Dai, and R. P. H. Chang, “Field emission from
nanotube bundle emitters at low field”, Appl. Phys. Lett., 70 (1997) 3308
[15] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P.
Nordlander, D. T. Colbert, and R. E. Smalley, ”Unraveling nanotubes: field
emission from an atomic wire”, Science, 269 (1995) 1550
[16] W. A. D. Heer, A. Chatelain, and D. Ugarte, ”A carbon nanotube field-emission
electron source”, Science, 270 (1995) 1179
[17] Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, and E. W. Seeling, “A
nanotube-based field-emission flat panel display”, Appl. Phys. Letts., 72 (1998)
2912
[18] W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Large current density
from carbon nanotube field emitters”, Appl. Phys. Lett., 75 (1999) 873
[19] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J.
E. Jung, N. S. Lee, G. S. Park, and J. m. Kim, ”Fully sealed, high-brightness
carbon-nanotube field-emission display”, Appl. Phys. Letts., 75 (1999) 3129
[20] P. G. Collins, and A. Zettl, “Unique characteristics of cathode carbon-nano
tube-matrix field emitters”, Phys. REV. B, 55 (1997) 9391
[21] H. J. Kim, J. H. Han, W. S. Yang, J. B. Yoo, C. Y. Park, I. T. Han, Y. J. Park, Y. W.
Jin, J. E. Jung, N. S. Lee, and J. M. Kim, ”Fabrication of field emission triode
using carbon nanotubes”, Materials Science and Emgineering C, 16 (2001) 27
[22] J. M. Bonard, H. Kind, T. Stockli, and L. O. Nilsson, “Field emission from
carbon nanotubes: the first five years”, Solid-State Electronics, 45 (2001) 893
[23] A. A. Talin, K. A. Dean, and J. E. Jaskie, “Field emission displays: a critical
review”, Solid-State Electronics, 45 (2001) 963
[24] Xiaolei Liu, Chenglung Lee, Chongwu Zhou, and Jie Han, “Carbon nanotube
field-effect inverters”, Applied Physics Letters, Vol.79, No.20, 12 November
2001, pp.3329-3331.
[25] Richard Martel, Hon-Sum Philip Wong, Kevin Chan, and Phaedon Avouris,
“Carbon nanotube field effect transistors for logic applications”, Proceeding of
International Electron Device Meeting(IEDM)2001, 9-12 December 2001,
Washington DC, USA, pp.159-162.
[26] R. Martel, V. Derycke, J. Appenzeller, S. Wind, and Ph. Avouris, “Carbon
nanotube field-effect transistors and logic circuits”, Proceeding of Design
Automation Conference 2002, 10-14 June 2002, pp.94-98.
[27] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and, C. M. Lieber,
“Carbon nanotube–based nonvolatile random access memory for molecular
computing” Science, 289 (2000) 94
[28] H. M. Cheng, Q. H. Yang, and C. Liu, “Hydrogen storage in carbon nanotubes”,
Carbon, 39 (2001) 1447
[29] A. K. M. F. Kibria, Y. H. Mo, K. S. Park, K. S. Nahm, and M. H. Yun,
“Electrochemical hydrogen storage behaviors of CVD, AD and LA grown
carbon nanotubes in KOH medium”, International Journal of Hydrogen
Energy, 26 (2001) 823
[30] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J.
Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature, 386
(1997) 377
[31] W. Qikun, Z. Changchun, L. Weihua, and W. Ting, “Hydrogen storage by carbon
nanotube and their films under ambient pressure”, International Journal of
Hydrogen Energy 27 (2002) 497 – 500
[32] C. Cantalinia, L. Valentinib, L. Lozzic, I. Armentanob, J. M. Kennyb, and S.
Santucci, “NO2 gas sensitivity of carbon nanotubes obtained by plasma
enhanced chemical vapor deposition”, Sensors and Actuators B 93 (2003)
F333–337
[33] J. Chung, K. H. Lee, and J. Lee, “Multi-walled carbon nanotube sensors”, Solid
State Sensors, Actuators and Microsystems 2E80.P
[34] A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas
ionization sensors using carbon nanotubes”, Narure , 424 (2003) 171
[35] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai,
“Nanotube molecular wires as chemical sensors”, Science, 287 (2000) 622
[36] P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity
of electronic properties of carbon nanotubes”, Science, 287 (2000) 1801
[37] Y. T. Jang, C. H. Choi, S. I. Moon, J. H. Ahn, Y. H. Lee, and B. K. Ju, “A novel
micro-gas sensor using laterally grown grown carbon nanotube”, Solid State
Sensors, Actuators and Microsystems (2003) 3E49P
[38] F. Kreupl, A. P. Graham, G.. S. Duesberg, W. Steinhogl, M. Liebau, E. Unger,
and W. Honlein, “Carbon nanotubes in interconnect applications”,
Microelectronic Engineering 64 (2002), pp.399-408.
[39] B. Q. Wei, R. Vajtal, and P. M. Ajayan, “Reliability and current carrying capacity
of carbon nanotubes”, Appl. Phys. Lett., 79 (2001) 1172
[40] S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor
based on a single carbon nanotube”, Nature, 393 (1998) 49
[41] C. Thelander, M. H. Magnusson, K. Deppert, L. Samuelson. P. R. Poulsen, J.
Nygard, and J. Borggreen, “Gold nanoparticle single-electron transistor with
carbon nanotube leads”, Appl. Phys. Lett., 79 (2001) 2106
[42] P. W. Chiu, G. S. Duesberg, U. D. Weglikowska, and S. Roth, “Interconnection of
carbon nanotubes by chemical functionalization”, Appl. Phys. Lett., 80 (2002)
3811
[43] A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, “Ballistic carbon
nanotube field-effect transistors”, Nature, 242 (2003) 654
[44] H. T. Soh, C. F. Quate, A. F. Morpurgo, C. M. Marcus, J. Kong, and H. Dai,
“Integrated nanotube circuits: Controlled growth and ohmic contacting of
single-walled carbon nanotubes” Appl. Phys. Lett., 75 (1999) 627
[45] A. Javey, J. Guo, D. B. Farmer, Q. Wang, E. Yenilmez, R. G. Gordon, M.
Lundstrom, and H. Dai, “Self-Aligned Ballistic Molecular Transistors and
Electrically Parallel Nanotube Arrays”, NANO LETTER, Vol. 4 (2004)
1319-1322
[46] Y. S. Park, K. S. Kim, H. J. Jeong, W. S. Kim, J. M. Moon, K. H. An, D. J. Bae, Y.
S. Lee, G. S. Park and Y. H. Lee, “Low pressure synthesis of single-walled
carbon nanotubes by arc discharge”, Synthetic Metals, 126 (2002) 245
[47] H. J. Lai, M. C. C. Lin, M. H. Yang and A. K. Li, “Synthesis of carbon nanotubes
using polycyclic aromatic hydrocarbons as carbon sources in an arc discharge”,
Materials Science and Engineering C, 16 (2001) 23
[48] H. Zeng, L. Zhu, G. Hao, and R. Sheng, “Synthesis various forms of carbon
nanotubes by AC arc discharge”, Carbon, 36 (1998) 259
[49] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. D. L. Chapelle, S. Lefrant,
P. Deniard, R. Lee, and J. E. Fisxher, “Large-scale production of single-walled
carbon nanotubes by the electric-arc technique”, nature, 388 (1997) 756
[50] B. I. Yakobson and R. E. Smalley, American Scientist, 85 (1997) 324
[51] Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, I. T. Han, W. B. Choi, N. S. Lee, J. M.
Kim, “Low temperature synthesis of carbon nanotube by microwave
plasma-enhanced chemical vapor deposition”, Synthetic Metals 108 (2000)
159-163
[52] X. Wang, Z. Hu, Q. Wu, X. Chen, and Y. Chen, “Synthesis of multi-walled
carbon nanotubes by microwave plasma-enhanced chemical vapor deposition”,
Thin Solid Films, 390 (2001) 130-133
[53] J. H. Han, S. H. Choi, T. Y. Lee, J. B. Yoo, C. Y. Park, H. J. Kim, I. T. Han, S. Yu,
W. Yi, G. S. Park, M. Yang, N. S. Lee, and J. M. Kim, “Effects of growth
parameters on the selective area growth of carbon nanotubes”, Thin Solid
Films, 409 (2002) 126
[54] Y. S. Woo, D. Y. Jeon, I. T. Han, N. S. Lee, J. E. Jung, and J. M. Kim, “In situ
diagnosis of chemical species for the growth of carbon nanotubes in
microwave plasma-enhanced chemical vapor deposition”, Diamond and
Related Materials, 11 (2002) 59
[55] U. Kim, R. Pcionek, D. M. Aslam, and D. Tomanek, “Synthesis of high-density
carbon nanotube films by microwave plasma chemical vapor deposition”,
Diamond and Related Materials, 10 (2001) 1947
[56] D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith,
and R. E. Smalley, “Elastic strain of freely suspended single-wall carbon
nanotube ropes”, Appl. Phys. Lett., 74 (1999) 3803
[57] Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J.
Kong, and H. Dai, “Electric-field-directed growth of aligned single-walled
carbon nanotubes”, Appl. Phys. Lett., 79 (2001) 3155
[58] A. Ural, Y. Li, and H. Dai, “Electric-field-aligned growth of single-walled
carbon nanotubes on surfaces”, Appl. Phys. Lett., 81 (2002) 3464
[59] Y. T. Janga, J. H. Ahnb, B. K. Jua, Y. H. Leec, “Lateral growth of aligned
mutilwalled carbon nanotubes under electric field”, Solid State
Communications 126 (2003) 305–308
[60] Y. H. Lee, Y. T. Jang, C. H. Choi, D. H. Kim, C.W. Lee, J. E. Lee, Y. S. Han, S.
S. Yoon, J. K. Shin, S. T. Kim, E. K. Kim, and B. K. Ju, “Direct Nanowiring
of Carbon Nanotubes for Highly Integrated Electronic and Spintronic
Devices”, Adv. Mater. 2001, 13, No. 18
[61] Y. Y. Wei, and G. Eres, “Directed assembly of carbon nanotube electronic
circuits”, Appl. Phys. Lett., 76 (2000) 3759
[62] Y. S. Han, J. K.Shin, and S. T. Kim, “Synthesis of carbon nanotube bridges on
patterned silicon wafers by selective lateral growth”, Appl. Phys. Lett., 90
(2001) 5731
[63] 鄭木棋, “奈米碳管元件之製作與分析”
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔