(3.236.118.225) 您好!臺灣時間:2021/05/14 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊明倫
研究生(外文):Ming-Lun Yang
論文名稱:旋轉雷立夫樑受週期性側向與軸向力之動態響應分析
論文名稱(外文):Dynamic response analysis of a rotating Rayleigh beam with periodically radial and axial forces
指導教授:黃以玫黃以玫引用關係
指導教授(外文):Yii-Mei Huang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:112
中文關鍵詞:動態響應穩定性分析多重尺度法旋轉雷立夫樑
外文關鍵詞:rotating Rayleigh beamdynamic responsestability analysisthe method of multiple scales
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
  本文欲模擬車床加工中,均勻圓柱之工件的動態響應。預想之加工情況,為等速循環之連續切削,刀具作用於工件上之力可視作一移動之外力,除了對工件產生週期之側向力之外,對工件之軸向也會造成張力與壓力作用。文中將等速移動之側向力與軸向力表示為週期性之函數,利用傅立葉展開法,分析車削多個週期後,工件之動態響應。

  理論上,工件可視為一旋轉之雷立夫樑,受到週期性運動相依之側向力,與週期性之軸向力。本文使用漢米爾頓定理,推導出此系統之運動方程式,並無因次化,代入以傅立葉展開之外力函數,再以格勒金法離散化系統運動方程式。接著,針對各個模態,以多重尺度法與數值方法做穩定性分析,以討論在各種條件下,系統之穩定特性。之後,以阮奇庫塔法,求解系統之微分方程組,得到位移響應,並經由快速傅立葉轉換得到頻譜圖,分析位移響應之頻譜特性。最後,再顯示穩定狀態下,旋轉樑隨時間之變形。
This paper formulates the processing of the lathe. In this process, a turning tool moves along the workpiece repeatedly. It could be seem as a periodically moving load which includes radial motion-dependent force and axial tension and compression distributed forces. To analyze the dynamic response of the workpiece after numerous turning cycles, those external forces are periodic functions in the forms of Fourier series.

A rotating Rayleigh beam with periodically radial and axial forces was considered. The governing equations were derived by Hamilton's principle and expressed in a dimensionless form. The equation of motions was turned into discrete equations by Galerkin's method. For each mode, the stability of the rotating beam was analyzed by the method of multiple scales and Floquet theory. The differential equations were also solved by Runge-Kutta method. The phenomena of stability analysis and spectrum analysis are discussed. Finally, the time responses of the beam are showed and discussed.
目錄………………………………………………I
圖索引……………………………………………III
表索引……………………………………………VII
第一章 前言………………………………………1
第二章 系統運動方程式…………………………4
2.1. 方程式推導…………………………………4
2.2. 無因次化系統方程式………………………6
2.3. 模擬外力形式………………………………7
2.3.1. 運動相依移動側向力……………………8
2.3.2. 軸向力……………………………………11
2.4. 離散化系統方程式…………………………13
第三章 穩定性理論………………………………18
3.1. 多重尺度法…………………………………18
3.1.1. 軸向力的穩定性分析……………………19
3.1.2. 運動相依移動側向力的穩定性分析……32
3.1.3. 二次項穩定性分析………………………39
3.1.4. 模態耦合…………………………………41
3.2. 數值方法……………………………………48
第四章 系統之數值結果與討論…………………51
4.1. 穩定性分析…………………………………51
4.1.1. 軸向力之影響……………………………52
4.1.2. 運動相依側向力之影響…………………56
4.2. 樑上單點位移………………………………59
4.3. 樑變形………………………………………65
第五章 結論與建議………………………………66
5.1. 結論…………………………………………66
5.2. 建議…………………………………………67
參考文獻……………………………………………69
Argento, A. and Scott, R. A., 1992, “Dynamic response of a rotating beam subjected to an accelerating distributed surface force”, Journal of Sound and Vibration, Vol. 157, pp. 221-231

Argento, A., 1995, “A spinning beam subjected to a moving deflection dependent load, Part I : response and resonance”, Journal of Sound and Vibration, Vol. 182, pp. 595-615

Argento, A. and Morano, H. L., 1995, “A spinning beam subjected to a moving deflection dependent load, Part II : parametric resonance”, Journal of Sound and Vibration, Vol. 182, pp. 617-622

Bauer, H. F., 1980, “Vibration of a rotating uniform beam, Part I : orientation in the axis of rotation”, Journal of Sound and Vibration, Vol. 72, pp. 177-189

Burden, R. L. and Faires, J. D., 2001, Numerical Analysis, Brooks/cole

Cheng, C. C. and Lin, J. K., 2003, “Modelling a rotating shaft subjected to a high-speed moving force”, Journal of Sound and Vibration, Vol. 261, pp. 955-965

Dym, C. L. and Shames, I. H., 1973, Solid Mechanics A Variational Approach, McGraw-Hill

Huang, Y. M. and Chang, K. K., 1997, “Stability analysis of a rotating beam under a moving motion-dependent force”, Journal of Sound and Vibration, Vol. 202, pp. 427-437

Huang, Y. M. and Lee, C. Y. , 1998, “Dynamics of a rotating Rayleigh beam subject to a repetitively travelling force”, International Journal of Mechanical Sciences, Vol. 40, pp. 779-792

Katz, R., Lee, C. W., Ulsoy, A. G., and Scott, R. A., 1987, “Dynamic stability and response of a beam subject to a deflection dependent moving load”, Transactions of the ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 109, pp. 361-365

Katz, R., Lee, C. W., Ulsoy, A. G., and Scott, R. A., 1988, “The dynamic response of a rotating shaft subject to a moving load”, Journal of Sound and Vibration, Vol. 122, pp. 131-148

Kim, S. M., 2005, “Stability and dynamic response of Rayleigh beam-columns on an elastic foundation under moving loads of constant amplitude and harmonic variation”, Engineering Structures, Vol. 27, pp. 869-880

Lee, C. W., Katz, R., Ulsoy, A. G., and Scott, R. A., 1988, “Modal analysis of distributed parameter rotating shaft”, Journal of Sound and Vibration, Vol. 122, pp. 119-130

Lee, H. P., 1995, “Dynamic response of a rotating Timoshenko shaft subject to axial forces and moving loads”, Journal of Sound and Vibration, Vol. 181, pp. 169-177

Meirovitch, L., 2001, Fundamentals of Vibrations, McGraw-Hill

Nayfeh, A. H. and Mook, D. T., 1979, Nonlinear Oscillations, New York Wiley

Rao, S. S., 1986, Mechanical Vibrations, Addison-Wesley

Timoshenko, S. P., 1922, “On the forced vibration on bridges”, Philosophical Magazine, Vol. 43, pp. 1018
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔