跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 17:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅士傑
研究生(外文):Shih-Chieh Lo
論文名稱:新式熱再循環熱水器設計之實作研究
論文名稱(外文):An experimental study on designs of new geysers with heat recirculations.
指導教授:施聖洋
指導教授(外文):Sheng-Yang Shih
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:90
中文關鍵詞:熱再循環熱水器瑞士捲燃燒器
外文關鍵詞:heat-recirculatinggeyserswiss-roll burner
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究以熱再循環燃燒技術為主要核心,使用瑞士捲燃燒器(Swiss-roll burner,簡稱SRB),將不同當量比(equivalence ratio)與流速的丙烷/空氣預混氣體燃燒轉換成高溫生成物,並採用不同的熱交換設計概念,目的是設計出省能熱水器。接著以燃氣雷諾數(Re)、當量比(ψ)對水溫與水熱效率(ηthermal)的影響,來做新一代熱水器的改良與評估標準,並量測燃燒生成物之濃度,如CO和NOx等,藉以判斷熱水器系統與燃燒器彼此結合後是否會導致燃燒熱釋放的效率降低。熱水器的設計概念有三:(1)結合鰭管式熱交換器,使用市售電腦用水冷系統鰭管散熱組,透過其良好的熱交換特性,將瑞士捲燃燒器高溫生成氣體之熱量與冷水轉換;(2)使用自研發銅材水渠道為燃燒器上板,藉由高溫火焰接觸來傳熱,並於水渠道上板中加入鰭片增加熱交換面積;(3)加入延伸銅管,由燃燒器排氣流道出口延伸到中心燃燒室出口處再轉折返迴。實驗結果顯示,使用鰭管式熱交換器必須先解決高溫廢氣水冷凝於熱交換器面板上而使熱交換效率下降的問題,特別是在高流速下會更加速冷凝水之產生。而使用銅材質上板能克服冷凝水問題,並直接由燃燒室的高火焰溫度透過銅板直接傳遞到水流中,使用捲數1.5圈之瑞士捲燃燒器,燃燒器出口處仍有500oC以上的高溫氣體排出。結合了延伸銅管的概念,可使出口氣體之溫度下降到100oC左右,證明延伸銅管置於燃燒器生成物流道內是有效的設計概念。我們進一步地使用捲數為2.5圈之瑞士捲燃燒器,可有效增加熱再循環率,提高熱水水量。本論文另一重點,以熱再循環燃燒器為對象,首度建立用熱損失為參數之數學模型,藉由實驗量測結果佐以建立符合操作條件下之熱損失參數,做為日後設計改良熱水器之參考。
英文摘要
The purpose of this research is to design an energy-saving geyser using heat-recirculating lean premixed combustion technique in the Swiss-roll burner (SRB). The burner uses lean premixed C3H8/air mixtures as a fuel. The effects of Reynolds number (Re) and equivalence ratio (ψ) on the hot water temperature and the heat efficiency of the geyser are investigated in order to judge and improve design. Emissions, such as CO and NOx are measured by the flow gas analyzer. Three different designs of the heat exchangers inside and outside the SRB are proposed, (1) a fin-tube heat exchanger similar to that used by the personal computer, (2) a self-designed copper water plate with fins which is used as the upper plate of the SRB, and (3) similar to (2) but plugging the extended copper tubes along the flow channel of the products to increase heat transfer for water heating. Experiment results show that the water condense problem on the fin-tube surface, as the first design, can degrade the heat transfer efficiency especially at high Re. The second and third designs are free from the water condensed problem. The second design with 1.5 turns of the SRB is not good enough, because the exit temperature of the products is still high, over 500oC. In order to fully utilize the hot temperature of the products, we use the third design, and the exit temperature of the SRB can be reduced to about 100oC. Furthermore, a bigger SRB with 2.5 turns is also built for increasing higher hot water flow rates in the geyser. Probably, the most important point in this thesis is to develop a simple mathematic model based on several heat loss parameters in the heat-recirculating system to predict the performance of the geyser and thus improve its design. Finally, this simple mathematical model is proposed.
目錄
摘要………………………………I
英文摘要…………………………II
誌謝………………………………III
目錄………………………………IV
圖表目錄…………………………VIII
符號說明…………………………XI
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 2
1.3 解決方法 3
1.4 論文概要 4
第二章 文獻回顧 6
2.1 熱再循環原理 6
2.2 貧油預混紊流燃燒 7
2.3 瑞士捲燃燒器 7
2.4 燃氣熱水器開發 10
2.5 有關熱再循環燃燒器之數學模型 13
第三章 實驗設備與實驗方法 27
3.1 瑞士捲燃燒器實驗系統之建構 27
3.1.1 瑞士捲燃燒器之製作 27
3.1.2 溫度量測系統 28
3.1.3 流量控制系統 30
3.1.4 燃氣混合管路 31
3.1.5 廢氣量測裝置 31
3.2 熱再循環熱水器之設計 31
3.2.1 熱水器之設計(A) 32
3.2.2 熱水器之設計(B) 33
3.2.3 熱水器之設計(C1) 33
3.2.4 熱水器之設計(C2) 34
3.2.5 熱水器之設計(C3) 35
3.3 實驗方法 35
第四章 熱水器系統相關計算與簡易數學模型 43
4.1 熱水器相關計算 43
4.1.1 當量比計算 43
4.1.2 燃氣流速計算 44
4.1.3 雷諾數計算 44
4.1.4 水熱效率計算 44
4.2 簡易數學模型 45
4.2.1 基本關係式 45
4.2.2 燃燒後溫度計算 46
4.2.3 燃燒器出口與燃燒室入口溫度計算 47
4.2.4 參數最佳化 48
4.2.5 實驗參數代入結果 48
第五章 實驗結果與綜合討論 55
5.1 Type-A-置內鰭管式熱水器測試結果 55
5.2 Type-B-置頂鰭管式熱水器實驗結果 56
5.2.1 當量比之影響 56
5.2.2 雷諾數之影響 57
5.2.3 其他因素之影響 57
5.2.4 生成物排放分析 58
5.3 Type-C1-銅材質上板渠道熱水器實驗結果 59
5.3.1 雷諾數之影響 59
5.4 Type-C2-1.5圈銅渠道+延伸銅管熱水器實驗結果 60
5.4.1 雷諾數之影響 60
5.5 Type-C3-2.5圈銅渠道+延伸銅管熱水器實驗結果 61
5.5.1 當量比之影響 61
5.5.2 雷諾數之影響 61
5.5.2 生成物排放分析 62
5.6 綜合討論 63
第六章 結論與未來工作 71
6.1 應用鰭管式熱交換之設計 71
6.2 Type-C上板水渠道+延伸銅管之設計 71
6.3 數學模型之建立 72
6.4 未來發展方向 73
參考文獻 74
參考文獻
Chen, M., and Buckmaster, J., "Modelling of combustion and heat transfer in ‘Swiss roll’ micro-scale combustors", Combust. Theory and Model., Vol. 8, pp. 701-720 (2004).

Hoffmann, J. G., Echigo, R., Yoshida, H., and Tada, S., "Experimental study on combustion in porous media with a reciprocating flow system", Combust. Flame, Vol. 111, pp. 32-46 (1997).


Jones, A. R., Lloyd, S. A., and Weinberg, F. J., "Combustion in heat exchanger", Proc. R. Soc. Lond. A, Vol. 360, pp. 97-115 (1978).


Jugjai, S., and Rungsimuntuchart, N., "High efficiency heat-recirculating domestic gas burners", Exp. Thermal Fluid Sci., Vol. 26, pp. 587-592 (2002).

Jugjai, S., and Sawananon, A., "The surface combustor-heater with cyclic flow reversal combustion embedded with water tube bank", Fuel, Vol. 83, pp. 2369-2379 (2004).


Kim, N. I., Kato, S., Kataoka, T., Yokomori, T., Maruyama, S., Fujimori, T., and Maruta, K., "Flame stabilization and emission of small Swiss-roll combustors as heaters", Combust. Flame, Vol. 141, pp. 229-240 (2005).

Lloyd, S. A., and Weinberg, F. J., "A burner for mixtures of very low heat content", Nature, Vol. 251, pp. 47-49 (1974).


Lloyd, S. A., and Weinberg, F. J., "Limits to energy release and utilization from chemical fuels", Nature, Vol. 257, pp. 367-370 (1975).


Ronney, P. D., "Analysis of non-adiabatic heat-recirculating combustors", Combust. Flame, Vol. 135, pp. 421-439 (2003).

Shinoda, M., Tanaka, R., and Arai, N., "Optimization of heat transfer performances of a heat-recirculating ceramic burner during methane/air and low-calorific-fuel/air combustion", Energy Conv. and Manag., Vol. 43, pp. 1479-1491 (2002).

Shinoda, M., Maihara, R., Kobayashi, N., Araid, N., and Churchille, S. W., "The characteristics of a heat-recirculating ceramic burner", Chem. Eng. J., Vol. 71, pp. 207-212 (1998).

Shy, S. S., I, W. K., and Lin, M. L., "A new cruciform burner and its turbulence measurements for premixed turbulent combustion study", Exp. Thermal Fluid Sci., Vol. 20, pp. 105-114 (2000a).

Shy, S. S., Lin, W. J., and Wei, J. C., "An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion", Proc. R. Soc. Lond. A, Vol. 456, pp. 1997-2019 (2000b).

Shy, S. S., Lin, W. J., and Peng, K. Z., "High-intensity turbulent premixed combustion: general correlations of turbulent burning velocities in a new cruciform burner", Proc. Combust. Inst., Vol. 28, pp. 561-568 (2000c).

Tanaka, R., Shinoda, M. and Arai, N., "Combustion characteristics of a heat-recirculating ceramic burner using a low-calorific-fuel", Energy Conv. and Manag., Vol. 42, pp. 1897-1907 (2001).


Xiong, T. Y., Khinkis, M. J., and Fish, F. F. "Experimental study of a high-efficiency, low emission porous matrix combustor-heater", Fuel, Vol. 11, pp. 1641-1647 (1995).


王志華,"潔淨能源:超焓燃燒器研發" 國立中央大學機械工程研究所,碩士論文 (2002).


吳昇哲,"小型熱再循環觸媒燃燒器之實驗研究及應用" 國立中央大學機械工程研究所,碩士論文 (2003).


金志剛,"燃氣測試技術手冊",天津大學出版社 (1994).

王啟川,"熱交換器設計(I)",五南出版社 (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top