(3.210.184.142) 您好!臺灣時間:2021/05/09 10:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭凱元
研究生(外文):Kai-Yuan Chen
論文名稱:次微米週期性結構之嚴格繞射光學模擬與設計
指導教授:孫慶成孫慶成引用關係
指導教授(外文):Ching-Cherng Sun
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:85
相關次數:
  • 被引用被引用:2
  • 點閱點閱:211
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的目的在於以嚴格繞射理論來模擬來分析微米以下的週期性光柵的繞射特性,並運用來設計次微米繞射光學元件。
論文內容主要可分為兩大部分:
(一) 在理論上以馬克斯威爾方程出發,以向量繞射理論分析精細結構光柵的繞射特性。
(二) 在應用上以次微米週期性光柵的特性,設計可見光波段的偏振分光器。
第一章 緒論 1
1-1 繞射的發展 1
1-2 繞射光學元件 2
1-3 繞射光學元件的電磁分析 3
1-4 論文大綱與安排 4
第二章 光柵的繞射電磁理論 5
2-1 TE的單層光柵平面繞射電磁理論 5
2-2 TE的多層光柵平面繞射電磁理論 15
2-3 TM的單層光柵平面繞射電磁理論 18
2-4 TM的多層光柵平面繞射電磁理論 26
第三章 個別的光柵電磁理論所模擬之平面繞射結果 31
3-1 單層光柵的分析結果 31
3-1.1 無吸收之電介質材料 31
3-1.2 有吸收之金屬材料 37
3-2 多層光柵的分析結果 45
3-2.1 無吸收之電介質材料 45
3-2.2 有吸收之金屬材料 50
第四章 週期結構用於偏振分光器之設計 56
4-1 有效介質理論 56
4-2 傳統偏振分光器 63
4-3 可見光波段之次微米週期性結構偏振分光器 65
第五章 結論 78
參考資料 79
中英文對照表 82
[1] W. B. Veldkamp, G. J. Swanson, S. A. Gaither, C.-L. Chen, and T. R. Osborne, “Binary optics: a diffraction analysis,” MIT Lincoln Laboratory Project Rep. ODT 20, (MIT Lincoln Laboratory, Lexington, Mass., 1989).
[2] M. A. Heald and J. B. Marion, Classical Electrical Radiation, 3rd ed. (Saunders Colledge Publishing, 1995), Chap. 12.
[3]Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 2002).
[4] S. Silver, “Microwave aperture antennas and diffractions,” J. Opt. Soc. Am 52, 131-139 (1962).
[5] E. N. Glytsis, “Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis,” J. Opt. Soc. Am A 19, 702-715 (2002).
[6] M. Neviere and P. Vincent, “Differential theory of gratings: answer to an objection on its validity for TM polarization,” J. Opt. Soc. Am 5, 1522-1524 (1988).
[7] J. R. Andrewartha, J. R. Fox, and I. J. Wilson, “Resonance anomalies in the lamellar grating,” Opt. Act. 26, 69 (1979).
[8] Lord Rayleigh, “On the dynamical theory of gratings,” Proc. Roy.
A 79, 399-416(1907).
[9] L. Solymar and D. J. Cooke, “Volume holography and volume gratings,” Academic Press, London (1981).
[10] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffraction-E-mode polarization and losses,” J. Opt. Soc. Am. 73, 451-455 (1983).
[11] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780-1787 (1986).
[12] E.g., C. L. Liu and J. W. S. Liu, Linear systems Analysis (McGraw-Hill, New York, 1975).
[13] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1078 (1995).
[14] A. Nesci, R. Dandliker, M. Salt, and H. P. Herzig, “Measuring amplitude and phase distribution of fields generated by gratings with sub-wavelength resolution,” Opt. Commun. 205, 229-238 (2002).
[15] M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077-1086 (1995).
[16] D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154-1167 (1993).
[17] D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33, 2695-2706 (1994).
[18] L. Li and C. W. Haggans, “Convergence of the coupled-wave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184-1189 (1993).
[19] P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779-784 (1996).
[20] R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings,” Opt. Lett. 21, 761-763 (1996).
[21] M. Bass, ed., Handbook of Optics, Devices, Measurements, and Properties, 2nd ed. (McGraw-Hill, New York, 1995), Vol 2.
[22] F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, “Form-birefringent computer-generated holograms,” Opt. Lett. 18, 1513-1515 (1996).
[23] R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Soc. Am. A 14, 1627-1636 (1997).
[24] L. Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of a medium,” Philos. Mag. 34, 481-502 (1892).
[25] J. C. Maxwell Garnett, “On colours in metal glasses, in metallic films, and in metallic solutions,” Philos. Soc. London 205, 237-287 (1906).
[26] S. M. Rytov, “The electromagnetic properties of finely layered medium,” Sov. Phys. JETP 2, 466-475 (1956).
[27] M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1980), pp. 705-708.
[28] W. L. Bragg and A. B. Pippard, “The form birefringence of macromolecules,” Acta Crystallogr. 6, 865-867 (1953).
[29] J. M. Corless and M. W. Kaplan, “Structural interpretation of the birefringence gradient in retinal rod outer segments,” Biophys. J. 26, 543-556 (1979).
[30] R. Oldenbourg and T. Ruizsds6, “Birefringence of macromolecules: Wiener’s theory revisited, with applications to DNA and tobacco mosaic virus,” Biophys. J. 56, 195-205 (1989).
[31] R. C. McPhedran, L. C. Botten, M. S. Craig, M. Neviere, and D. Maystre, “Lossy lamellar gratings in the quasistatic limit,” Opt. Acta 29, 289-312 (1982).
[32] H. C. Hsu, “Design and Fabrication of High Efficient Planer Polarizing Beam Splitter for Integrated Lightguide Polarization Converter,” 國立交通大學光電科學研究所碩士論文, (2002).
[33] R. C. Tyan, P. C. Sun, A. A. Salvekar, H. P. Chou, C. C. Cheng, F. Xu, A. Scherer, and Y. Fainman, “Subwavelength Multilayer Binary Grating Design for Implementing Photonic Crystals,” in Quantum Optoelectronics of 1997 OSA Technical Digest Series 9, 3537 (1997).
[34] R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag Berlin Heidelberg New York 1980), pp. 159-173.
[35] A. G. Lopez and H. G. Craighead, “Subwavelength surface-relief gratings fabricated by microcontact printing of self-assembled monolayers,” Appl. Opt. 40, 2068-2075 (2001).
[36] L. Pajewski, R. Borghi, G. Schettini, F. Frezza, and M. Santarsiero, “Design of a binary grating with subwavelength features that acts as a polarizing beam splitter,” Appl. Opt. 40, 5898-5905 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔