跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/05 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉星輝
研究生(外文):Hsing-Hui Yeh
論文名稱:生物晶片之螢光光學檢測
指導教授:楊宗勳楊宗勳引用關係
指導教授(外文):Tsung-Hsun Yang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:76
中文關鍵詞:微光柵微透鏡微流道螢光生物晶片
外文關鍵詞:microgratingbiochipfluorescencemicrochannelmicrolens
相關次數:
  • 被引用被引用:3
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
近幾年來,由於生物科技一日千里,並且搭配成熟的微系統加工技術,使得生物晶片的研究蔚為風潮。其中微流體晶片將實驗室中進行的一連串生化分析,整合至同一晶片中,相較於傳統實驗室,具有反應速度快,樣本及試劑使用量減少等不少優點,因此是未來生物晶片發展的重要方向之一。
而目前在微流體晶片中,所使用的螢光檢測技術,其螢光染料的激發頻譜與放射頻譜通常會有部份重疊在一起,因此在使用濾光片將激發光濾去以增加訊雜比的同時,也會把部份的放射光濾掉,將使得檢測更困難。本文中針對此問題,提出一種新型的檢測架構,把微流道與微光學元件(包含微透鏡及微光柵)作一系統性的整合。
初步以氦氖雷射以及綠光雷射進行測試,使用本生物晶片的架構,並且搭配CCD的檢測方式,可得到一個空間的頻譜訊號分佈。進一步再針對混合光譜的訊號進行分析,期望可以得到原先光譜的混合比例。
目錄

論文摘要 i
目錄 ii
圖索引 iv
表索引 vi

第一章 緒論 1
1.1 前言 1
1.1.1 生物晶片之近況 2
1.1.2 微流體晶片之檢測方法 15
1.1.3 研究動機 16
1.2 論文架構 17

第二章 晶片架構設計 18
2.1繞射式透鏡的設計 20
2.2繞射式光柵的設計 26
2.3總結 31

第三章 元件製作 32
3.1 濕式蝕刻的製作方式 32
3.2 微流道的製作 34
3.3 繞射式透鏡的製作 40
3.4 繞射式光柵的製作 44
3.5 元件接合 47
3.6總結 50

第四章 量測結果與討論 51
4.1 蝕刻速率的量測 51
4.2 繞射式光柵的量測 53
4.3 頻譜訊號的量測 56
4.4混合訊號的量測 58
4.5總結 67

第五章 結論 68

參考文獻 70
參考文獻

[1] J. Craig Venter, “The Sequence of the Human Genome,” Science, vol. 291, pp. 1304-1351, 2001.
[2] T. Strachan, Human Molecular Genetics, 3rd ed, 2004.
[3] H. Lodish, Molecular Cell Biology, 5th ed, W.H. Freeman, New York, 2004.
[4] K. K. Jain, “Biochips for Gene Spotting,” Science, vol. 294, pp. 621-623, 2001.
[5] J. Khan, “Expression profiling in cancer using cDNA,” Electro -phoresis, vol. 20, pp. 223-229, 1999.
[6] G. Macbeath, and S. L. Schreiber, “Printing Proteins as Microarrays for High-Throughput Function Determination,” Science, vol. 289, pp. 1760-1763, 2000.
[7] D. Erickson, “Integrated microfluidic devices,” Analytica Chimica Acta, vol. 507, pp. 11-26, 2004.
[8] A. Manz, “miniaturized total Chemical Analysis System: A Novel Concept for Chemical Sensing,” Sensors and Actuators, B1, 1990.
[9] M. Schena, “Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray,” Science, vol. 270, pp. 467-470, 1995.
[10] 張玉瓏, 生物技術, 新文京開發出版有限公司, 2003.
[11] J. J. Chen, Genomics, vol. 51, pp. 313, 1998.
[12] R. J. Lipshutz, “High density synthetic oligonucleotide arrays,” Nature genetics, vol. 21, pp. 20-24, 1999.
[13] M. Schena, DNA Microarrays: A Practical Approach, Oxford University Press, Oxford, 1999.
[14] A. Gorg, “The current stage of two dimensional electrophoresis with immobilized pH gradients,” Electrophoresis, vol. 21, pp. 1037-1053, 2000.
[15] M. Koch, “The dynamic micropump driven with a screen printed PZT actuator,” Journal of Micromechanics and Microengineering, vol. 8, pp. 119-122, 1998.
[16] A. Manz, “Micromachining a Miniaturized Capillary Electrophoresis -Based Chemical Analysis System on a Chip,” Science, vol. 261, pp. 895-897, 1993.
[17] G. T. A. Kovacs, “Novel interconnection technologies for integrated microfluidic systems,” Sensors and Actuators A, vol. 77, pp. 57-65, 1999.
[18] A. Manz, “Towards miniaturized electrophoresis and chemical analy -sis systems on silicon: an alternative to chemical sensors,” Sensors and Actuators B, vol. 10, pp. 107-116, 1993.
[19] Z. H. Fan, and D. J. Harrison, “Micromachining of capillary electro -phoresis injectors and separators on glass chips and evaluation of flow at capillary intersections,” Anal. Chem., vol. 66, pp. 177-184, 1994.
[20] Marten Stjernstrom, and Johan Roeraade, “Method for fabrication of microfluidic systems in glass,” J. Micromech. Microeng., vol. 8, pp. 33-38 , 1998.
[21] H. Becker, K. Lowack, and A. Manz, “Planar quartz chips with sub -micron channels for two-dimensional capillary electrophoresis applications,” J. Micromech. Microeng., vol. 8, pp. 24-28, 1998.
[22] H. Nakanishi, and T. Nishimoto, “Fabrication of quartz microchips with optical slit and development of a linear imaging UV detector for microchip electrophoresis systems,” Electrophoresis, vol. 22, pp. 230-234, 2001.
[23] L. Martynova, and L. E. Locascio, “Fabrication of plastic Microfluid Channels by Imprinting Methods,” Anal. Chem., vol. 69, pp. 4783-4789, 1997.
[24] D.C. Duffy, and J.C. McDonald, “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),” Anal. Chem. , vol. 70, pp. 4974-4984, 1998.
[25] J.R. Anderson, and D.T. Chiu, “ Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping,” Anal. Chem., vol. 72, pp. 3158-3164, 2000.
[26] G.S. Fiorini, “Disposable microfluidic devices: fabrication, func -tion, and application,” BioTechniques, vol. 38, pp. 429-446, 2005.
[27] A. Cozma, and B. Puers, "Characterization of the electrostatic bonding of silicon and Pyrex glass," J. micromech. Microeng., vol. 5, pp. 98-102, 1995.
[28] S.C. Jacobson, and A.W. Moore, "Fused quartz substrates for microchip electrophoresis," Anal. Chem., vol. 67, pp. 2059-2063, 1995.
[29] W.H. Ko, J.T. Suminto, and G.J. Yeh, Bonding Techniques for Micro -sensors, Micromachining and Micropackaging of Transducers, Elsevier Science Publishing, New York, 1985.
[30] 賴建芳,林裕城, ”微機電系統製程之接合技術,” 機械月刊,第25卷,第11期,314-321.
[31] H. Nakanishi, and T. Nishimoto, “Condition optimization, relia -bility evaluation of SiO2-SiO2 HF bonding and its application for UV detection micro flow cell,” Sensors and Actuators A, vol. 83, pp. 136-141, 2000.
[32] H. Nakanishi, and T. Nishimoto, “Studies on SiO2-SiO2 bonding with hydrofluoric acid. Room temperature and low stress bonding technique for MEMS,” Sensors and Actuators A, vol. 79, pp. 237-244, 2000.
[33] D. Schmalzing, “DNA sequencing on Microfabricated Electrophoretic Devices ,” Anal. Chem., vol. 70, pp. 2303-2310, 1998.
[34] A. T. Woolley, “Ultra-High-Speed DNA Sequencing Using Capillary Electrophoresis Chips,” Anal. Chem., vol. 67, pp. 3676-3680, 1995.
[35] N. Chiem, “Microchip-Based Capillary Electrophoresis for Immuno -assays: Analysis of Monoclonal Antibodies and Theophylline,” Anal. Chem., vol. 69, pp. 373-378, 1997.
[36] M. U. Kopp, “ Chemical Amplification: Continuous-Flow PCR on a Chip,” Science, vol. 280, pp. 1046-1048, 1998.
[37] M.A. Burns, “An Integrated Nanoliter DNA Analysis Device ,” Science, vol. 282, pp. 484-487, 1998.
[38] Y. Liu, “DNA Amplification and Hybridization Assays in Integrated Plastic Monolithic Devices ,” Anal. Chem., vol. 74, pp. 3063-3070, 2002.
[39] Agilent 2100 Bioanalyzer, http://www.agilent.com
[40] Der-chang Chen, “Palladium Film Decoupler for Amperometric Detec -tion in Electrophoresis Chips,” Anal. Chem., vol. 73, pp. 758-762, 2001.
[41] C.S. Effenhauser, “Integrated Capillary Electrophoresis on Flexi -ble Silicone Microdevices: Analysis of DNA Restriction Fragments and Detection of Single DNA Molecules on Microchips,” Anal. Chem., vol. 69, pp. 3451-3457, 1997.
[42] D.M. Pinto, “An enhanced microfluidic chip coupled to an electro -spray Qstar mass spectrometer for protein indentification,” Electrophoresis, vol. 21, pp. 181-190, 2000.
[43] P.A. Walker, “Isotachophoretic Separations on a Microchip. Normal Raman Spectroscopy Detection,” Anal. Chem., vol. 70, pp. 3766-3769, 1998.
[44] Z. Liang, “Microfabrication of a Planar Absorbance and Fluorescence Cell for Integrated Capillary Electrophoresis Devices,” Anal. Chem., vol. 68, pp. 1040-1046, 1996.
[45] M. Bass, Handbook of optics Ⅱ, 2nd ed., McGraw-Hill, New York, 1995.
[46] D.C. O’Shea, Diffractive Optics: design, fabrication, and test, SPIE Press, Bellingham, WA, 2003.
[47] J.W. Goodman, Introduction to Fourier Optics, 2nd ed., McGraw-Hill, San Francisco, 1996.
[48] S. Sinzinger, Microoptics, 2nd ed., Wiley-VCH, Weinheim, 2003.
[49] H.P. Herzig, Micro-optics: element, system and applications, Taylor and Francis, London, 1997.
[50] B. Kress, and P. Meyrueis, Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology, John Wiley and Sons, New York, 2000.
[51] M.C. Hutley, Diffraction Gratings, London, Academic Press, 1982.
[52] E.G. loewen, Diffraction Grating and Applications, Marcel Dekker, New York, 1997.
[53] http://www1.amershambiosciences.com/aptrix/upp01077.nsf/Content/ taiwan_homepage
[54] http://probes.invitrogen.com/handbook/boxes/0422.html
[55] M. Madou, Fundamentals of Microfabrication, CRC Press, Boca Raton, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李宜蓁(2003)。老師,請你要保重。康健雜誌,第059期,130-135。
2. 林振春(1993)。當前台灣地區成人教育需求評估方法之回顧與展望。成人教育雙月刊,11,31-38。
3. 邱淑芬& 蔡欣玲( 民85): 得爾菲預測術— 一種專家預測的護理研究方法。護理研究,4(1),92-98。
4. 施君蘭(2006)。東亞成為世界經濟火車頭。天下雜誌,第346期,228。
5. 紀博棟(2003)。台灣地區技術學院「投資學」課程教材之研究-以商業類技術學院進專部認為。商業職業教育,第89期,8-13。
6. 陳麗珠(1999),以德懷術(Delphi method)評估台灣省教育優先區補助政策實施成效之研究,國立高雄師範大學教育學系教育學刊,第15期,35-84。
7. 陳騰祥(1989)。S-P表分析(Stufent-Problem Chart Analysis)對教學行為改進效率用的德懷術(Delphi)調查與分析之研究。國立台灣教育學院輔導學報,12,1-84。
8. 陳聽安(2002)。公務人員退撫制度之重新定位。考銓季刊,第31期,54-65。
9. 溫騰光(2004)。教師投資理財的重要性和原則。學校行政雙月刊,第34期,112-126。
10. 蔡炳坤( 1992): 一種介於問卷調查法與會議之間的研究方法—德懷術。南投文教,第三期,85-96。
11. 賴鈺城、鄭雅方與林友雯 (2005)。投資人對不同理財工具之投資行為探討-以高雄縣市投資人為例。貨幣市場,9(1),21-45。
12. 謝臥龍(1997)。優良國中教師特質之德懷術分析。教育研究資訊,5(3),14-28。
13. [30] 賴建芳,林裕城, ”微機電系統製程之接合技術,” 機械月刊,第25卷,第11期,314-321.